NASA Selects Advanced Space for Two SBIR Phase I Awards

NASA Selects Advanced Space for Two SBIR Phase I Awards

Advanced Space, a space tech solutions company, has announced that NASA has selected two of their new Phase I concepts under the Small Business Innovation Research (SBIR) program.

Flight Dynamics and Navigation Technologies 

The first project won under the Flight Dynamics and Navigation Technologies subtopic will support NASA’s future efforts to design spacecraft trajectories for vehicles flying in cislunar space using low-thrust propulsion. The goal of NASA’s opportunity is to increase the autonomy of spacecraft heading for orbits at or near the Moon.

Under this subtopic, Advanced Space will develop a mission design and planning tool that uses operational algorithms to mitigate the impact of anomalies and missed-thrust events for low-thrust and dynamically sensitive missions. The tool will be used to generate a multitude of spacecraft trajectories simultaneously to determine the worst-case scenarios to account for margins in the mission design. The proposed solution will be especially useful to future crewed Artemis missions to reduce mission risk more comprehensively. The solution is named CALM or Contingency Analysis for Low-thrust Missions.

This effort builds on Advanced Space's experience developing low-thrust trajectories to near-rectilinear halo orbit, as demonstrated by the CAPSTONE program; their ongoing studies for developing ballistic lunar transfers for the Lunar Gateway program; and efforts to apply neural networks to developing autonomous trajectory planning for spacecraft using electric propulsion.

“We’re excited to win another NASA award, and we look forward to supporting the agency in further efforts in the future. Being awarded these NASA SBIRs is tremendous,” said Advanced Space Proposal Manager Sean Hoenig. “Our ability to deliver innovation to orbit continues to be realized as we meet NASA’s needs by utilizing our unique expertise in astrodynamics.”

Space Debris Prevention for Space Spacecraft

Under the second project, Advanced Space will develop deorbit technologies compatible with small satellites, which will reduce the threat of orbital debris posed by large satellite constellations. Their solution, Satellite Collision, and Risk Assessment using Machine Learning (SCRAM), features a trade study of using Recurrent and Transformer Neural Networks (NNs) to develop autonomous risk analysis for spacecraft collision avoidance (COLA).

These new ML applications in astrodynamics predict future trends in collision risk early and validate collision avoidance maneuvers. By identifying conjunction events early and validating collision avoidance maneuvers autonomously, we would reduce the strain on COLA operators. SCRAM will be developed with the goal of being implemented into future space agency COLA ConOps such as the NASA Conjunction Assessment Risk Analysis (CARA) team. SCRAM could be applied to mega-constellations and private Space Domain Awareness (SDA) providers.

SCRAM will build upon and enhance our company’s efforts to apply machine learning to astrodynamics problems and improve spacecraft's ability to function in space without requiring input from Earth.

We are grateful for NASA’s investment and partnership in technology development. This proven model has allowed us to demonstrate novel approaches to challenges and to enable future space exploration and development, exclaimed Dr. Jeffrey Parker, Advanced Space Chief Technology Officer.  “We look forward to the execution of these two projects. These will continue our efforts to develop technologies that enable future exploration, development, and settlement of space.”

Click here to learn more about the NASA's SBIR program and Awards.

Publisher: SatNow
Tags:-  SatelliteGround

GNSS Constellations - A list of all GNSS satellites by constellations

beidou

Satellite NameOrbit Date
BeiDou-3 G4Geostationary Orbit (GEO)17 May, 2023
BeiDou-3 G2Geostationary Orbit (GEO)09 Mar, 2020
Compass-IGSO7Inclined Geosynchronous Orbit (IGSO)09 Feb, 2020
BeiDou-3 M19Medium Earth Orbit (MEO)16 Dec, 2019
BeiDou-3 M20Medium Earth Orbit (MEO)16 Dec, 2019
BeiDou-3 M21Medium Earth Orbit (MEO)23 Nov, 2019
BeiDou-3 M22Medium Earth Orbit (MEO)23 Nov, 2019
BeiDou-3 I3Inclined Geosynchronous Orbit (IGSO)04 Nov, 2019
BeiDou-3 M23Medium Earth Orbit (MEO)22 Sep, 2019
BeiDou-3 M24Medium Earth Orbit (MEO)22 Sep, 2019

galileo

Satellite NameOrbit Date
GSAT0223MEO - Near-Circular05 Dec, 2021
GSAT0224MEO - Near-Circular05 Dec, 2021
GSAT0219MEO - Near-Circular25 Jul, 2018
GSAT0220MEO - Near-Circular25 Jul, 2018
GSAT0221MEO - Near-Circular25 Jul, 2018
GSAT0222MEO - Near-Circular25 Jul, 2018
GSAT0215MEO - Near-Circular12 Dec, 2017
GSAT0216MEO - Near-Circular12 Dec, 2017
GSAT0217MEO - Near-Circular12 Dec, 2017
GSAT0218MEO - Near-Circular12 Dec, 2017

glonass

Satellite NameOrbit Date
Kosmos 2569--07 Aug, 2023
Kosmos 2564--28 Nov, 2022
Kosmos 2559--10 Oct, 2022
Kosmos 2557--07 Jul, 2022
Kosmos 2547--25 Oct, 2020
Kosmos 2545--16 Mar, 2020
Kosmos 2544--11 Dec, 2019
Kosmos 2534--27 May, 2019
Kosmos 2529--03 Nov, 2018
Kosmos 2527--16 Jun, 2018

gps

Satellite NameOrbit Date
Navstar 82Medium Earth Orbit19 Jan, 2023
Navstar 81Medium Earth Orbit17 Jun, 2021
Navstar 78Medium Earth Orbit22 Aug, 2019
Navstar 77Medium Earth Orbit23 Dec, 2018
Navstar 76Medium Earth Orbit05 Feb, 2016
Navstar 75Medium Earth Orbit31 Oct, 2015
Navstar 74Medium Earth Orbit15 Jul, 2015
Navstar 73Medium Earth Orbit25 Mar, 2015
Navstar 72Medium Earth Orbit29 Oct, 2014
Navstar 71Medium Earth Orbit02 Aug, 2014

irnss

Satellite NameOrbit Date
NVS-01Geostationary Orbit (GEO)29 May, 2023
IRNSS-1IInclined Geosynchronous Orbit (IGSO)12 Apr, 2018
IRNSS-1HSub Geosynchronous Transfer Orbit (Sub-GTO)31 Aug, 2017
IRNSS-1GGeostationary Orbit (GEO)28 Apr, 2016
IRNSS-1FGeostationary Orbit (GEO)10 Mar, 2016
IRNSS-1EGeosynchronous Orbit (IGSO)20 Jan, 2016
IRNSS-1DInclined Geosynchronous Orbit (IGSO)28 Mar, 2015
IRNSS-1CGeostationary Orbit (GEO)16 Oct, 2014
IRNSS-1BInclined Geosynchronous Orbit (IGSO)04 Apr, 2014
IRNSS-1AInclined Geosynchronous Orbit (IGSO)01 Jul, 2013