NASA Partners with U.S. Companies to Develop Technologies for Lunar Exploration

NASA Partners with U.S. Companies to Develop Technologies for Lunar Exploration

NASA has selected 11 U.S. companies to develop technologies that could support long-term exploration on the Moon and in space for the benefit of all. The technologies range from lunar surface power systems to tools for in-space 3D printing, which will expand industry capabilities for a sustained human presence on the Moon through Artemis, as well as other NASA, government, and commercial missions.  

"Partnering with the commercial space industry lets us at NASA harness the strength of American innovation and ingenuity," said NASA Administrator Bill Nelson. "The technologies that NASA is investing in today have the potential to be the foundation of future exploration." 

The projects, chosen under the agency’s sixth Tipping Point opportunity, will be funded jointly by NASA and the industry partners. The total expected NASA contribution to the partnerships is $150 million. Each company will contribute a minimum percentage – at least 10-25%, based on company size – of the total project cost. NASA’s Space Technology Mission Directorate (STMD) will issue milestone-based funded Space Act Agreements lasting for up to four years.

The selected technologies support infrastructure and capabilities in space and on the Moon. Six of the selected companies are small businesses. The awarded companies, their projects, and the approximate value of NASA’s contribution are:

  • Astrobotic Technology of Pittsburgh, $34.6 million – LunaGrid-Lite: Demonstration of Tethered, Scalable Lunar Power Transmission
  • Big Metal Additive of Denver, $5.4 million – Improving Cost and Availability of Space Habitat Structures with Additive Manufacturing
  • Blue Origin of Kent, Washington, $34.7 million – In-Situ Resource Utilization (ISRU)-Based Power on the Moon
  • Freedom Photonics of Santa Barbara, California, $1.6 million – Highly Efficient Watt-Class Direct Diode Lidar for Remote Sensing
  • Lockheed Martin of Littleton, Colorado, $9.1 million – Joining Demonstrations In-Space
  • Redwire of Jacksonville, Florida, $12.9 million – Infrastructure Manufacturing with Lunar Regolith – Mason
  • Protoinnovations of Pittsburgh, $6.2 million – The Mobility Coordinator: An Onboard COTS (Commercial-Off-the-Shelf) Software Architecture for Sustainable, Safe, Efficient, and Effective Lunar Surface Mobility Operations
  • Psionic of Hampton, Virginia, $3.2 million – Validating No-Light Lunar Landing Technology that Reduces Risk, SWaP (Size, Weight, and Power), and Cost
  • United Launch Alliance of Centennial, Colorado, $25 million – ULA Vulcan Engine Reuse Scale Hypersonic Inflatable Aerodynamic Decelerator Technology Demonstration
  • Varda Space Industries of El Segundo, California, $1.9 million – Conformal Phenolic Impregnated Carbon Ablator Tech Transfer and Commercial Production
  • Zeno Power Systems of Washington, $15 million – A Universal Americium-241 Radioisotope Power Supply for Artemis

"Our partnerships with industry could be a cornerstone of humanity's return to the Moon under Artemis," said Dr. Prasun Desai, acting associate administrator for STMD at NASA Headquarters in Washington. "By creating new opportunities for streamlined awards, we hope to push crucial technologies over the finish line so they can be used in future missions. These innovative partnerships will help advance capabilities that will enable sustainable exploration on the Moon."

Five of the technologies will help humanity explore the Moon. For astronauts to spend extended periods of time on the lunar surface, they will need habitats, power, transportation, and other infrastructure. Two of the selected projects will use the Moon’s own surface material to create such infrastructure – a practice called in-situ resource utilization, or ISRU. Redwire will develop technologies that would allow the use of lunar regolith to build infrastructure like roads, foundations for habitats, and landing pads.

Blue Origin’s technology could also make use of local resources by extracting elements from lunar regolith to produce solar cells and wire that could then be used to power work on the Moon.

Astrobotic’s selected proposal will advance technology to distribute power on the Moon’s surface, planned to be tested on a future lunar mission. The company’s CubeRover would unreel more than half a mile (one kilometer) of high-voltage power line that could be used to transfer power from a production system to a habitat or work area on the Moon.

The remaining six projects will help create new capabilities in other areas of space exploration and Earth observation. Freedom Photonics will develop a novel laser source that could enable a more efficient lidar system – a technology similar to radar that uses light instead of radio waves to make measurements. This system could better detect methane in Earth’s atmosphere and improve scientists’ understanding of climate change.

United Launch Alliance will continue the development of inflatable heat shield technology, building on the success of LOFTID (Low-Earth Orbit Flight Test of an Inflatable Decelerator). ULA will further develop the technology for possible use to return large rocket components from low Earth orbit for reuse. Such technology could also be used to land heavier payloads – such as the infrastructure required for crewed missions – on destinations like Mars.

Click here to learn about NASA’s Moon Missions.

Publisher: SatNow

GNSS Constellations - A list of all GNSS satellites by constellations

beidou

Satellite NameOrbit Date
BeiDou-3 G4Geostationary Orbit (GEO)17 May, 2023
BeiDou-3 G2Geostationary Orbit (GEO)09 Mar, 2020
Compass-IGSO7Inclined Geosynchronous Orbit (IGSO)09 Feb, 2020
BeiDou-3 M19Medium Earth Orbit (MEO)16 Dec, 2019
BeiDou-3 M20Medium Earth Orbit (MEO)16 Dec, 2019
BeiDou-3 M21Medium Earth Orbit (MEO)23 Nov, 2019
BeiDou-3 M22Medium Earth Orbit (MEO)23 Nov, 2019
BeiDou-3 I3Inclined Geosynchronous Orbit (IGSO)04 Nov, 2019
BeiDou-3 M23Medium Earth Orbit (MEO)22 Sep, 2019
BeiDou-3 M24Medium Earth Orbit (MEO)22 Sep, 2019

galileo

Satellite NameOrbit Date
GSAT0223MEO - Near-Circular05 Dec, 2021
GSAT0224MEO - Near-Circular05 Dec, 2021
GSAT0219MEO - Near-Circular25 Jul, 2018
GSAT0220MEO - Near-Circular25 Jul, 2018
GSAT0221MEO - Near-Circular25 Jul, 2018
GSAT0222MEO - Near-Circular25 Jul, 2018
GSAT0215MEO - Near-Circular12 Dec, 2017
GSAT0216MEO - Near-Circular12 Dec, 2017
GSAT0217MEO - Near-Circular12 Dec, 2017
GSAT0218MEO - Near-Circular12 Dec, 2017

glonass

Satellite NameOrbit Date
Kosmos 2569--07 Aug, 2023
Kosmos 2564--28 Nov, 2022
Kosmos 2559--10 Oct, 2022
Kosmos 2557--07 Jul, 2022
Kosmos 2547--25 Oct, 2020
Kosmos 2545--16 Mar, 2020
Kosmos 2544--11 Dec, 2019
Kosmos 2534--27 May, 2019
Kosmos 2529--03 Nov, 2018
Kosmos 2527--16 Jun, 2018

gps

Satellite NameOrbit Date
Navstar 82Medium Earth Orbit19 Jan, 2023
Navstar 81Medium Earth Orbit17 Jun, 2021
Navstar 78Medium Earth Orbit22 Aug, 2019
Navstar 77Medium Earth Orbit23 Dec, 2018
Navstar 76Medium Earth Orbit05 Feb, 2016
Navstar 75Medium Earth Orbit31 Oct, 2015
Navstar 74Medium Earth Orbit15 Jul, 2015
Navstar 73Medium Earth Orbit25 Mar, 2015
Navstar 72Medium Earth Orbit29 Oct, 2014
Navstar 71Medium Earth Orbit02 Aug, 2014

irnss

Satellite NameOrbit Date
NVS-01Geostationary Orbit (GEO)29 May, 2023
IRNSS-1IInclined Geosynchronous Orbit (IGSO)12 Apr, 2018
IRNSS-1HSub Geosynchronous Transfer Orbit (Sub-GTO)31 Aug, 2017
IRNSS-1GGeostationary Orbit (GEO)28 Apr, 2016
IRNSS-1FGeostationary Orbit (GEO)10 Mar, 2016
IRNSS-1EGeosynchronous Orbit (IGSO)20 Jan, 2016
IRNSS-1DInclined Geosynchronous Orbit (IGSO)28 Mar, 2015
IRNSS-1CGeostationary Orbit (GEO)16 Oct, 2014
IRNSS-1BInclined Geosynchronous Orbit (IGSO)04 Apr, 2014
IRNSS-1AInclined Geosynchronous Orbit (IGSO)01 Jul, 2013