Atomos Announces its First Orbital Demonstration Mission

Atomos Announces its First Orbital Demonstration Mission

After a period of intense development, in-space logistics provider Atomos Space is ready to launch two internally designed and built spacecraft. The vehicles, Quark and Gluon, will perform rendezvous, docking, refueling, and orbital transfer. This demonstration mission, dubbed The Singing Astronomer (after astronomer and opera singer Caroline Herschel, the first woman to receive a salary as a scientist) will pave the way for Atomos's Quark Orbital Transfer Vehicle (OTV). Quark will provide in-space services such as orbit raising, satellite life extension, cargo delivery to space stations, and refueling.

Atomos's approach to space logistics is to use "space resident" OTVs. In contrast to "kick-stage" OTVs, this architecture puts the "last mile delivery vans at the arrival airport and not on the plane with the cargo," per Atomos CEO, Vanessa Clark. "We gain performance and greatly reduce our costs by making it reusable. Having our OTVs staged on-orbit is a huge change to the status-quo".

The Singing Astronomer mission will see the Quark OTV launch with a target spacecraft, Gluon, on SpaceX's Transporter 10 in February of 2024. After separation from the launch vehicle, the two spacecraft will move through their paces, with Quark rendezvousing and docking autonomously to Gluon. Once docked, Quark will refuel from Gluon, before commencing further release, docking, propulsive, and orbital transfer demonstrations. This demonstration follows the method Atomos will use for deploying large constellations, with multiple client payloads integrated into the Gluon pallet for launch to accelerate and simplify their capture by Quark in orbit. This mission will test Atomos's integrated hardware and software developments, foundational for high delta-V orbital transfers and life extension of satellites in Geostationary Earth Orbit (GEO).

Crucial for realizing a high-performing and cost-effective solution was ensuring that knowledge of how the entire spacecraft works resides internal to Atomos. Aerospace is plagued with the desire to reinvent the wheel, but being too removed from understanding how the integrated system works and passively relying on vendors can also have dire consequences. "This is a large part of why we've brought a lot in-house," said Atomos COO, William Kowalski. "Our team is the closest to the problems that come up during development—with the most passion to get it right, quickly." 

Last summer, after moving away from a bus vendor, Atomos had a notional design for Quark and Gluon within 48 hours, a development plan later that month, and will go from ideation to launch in less than 18 months. Being able to quickly validate the viability of existing solutions allowed Atomos to decide early on to develop their own docking technologies and refueling operations to provide the best and most reliable value to customers. The Singing Astronomer mission will demonstrate docking and inter-spacecraft refueling, a critical capability for space resident OTVs.

Atomos attributes its ability to rapidly develop these technologies and two spacecraft buses internally to its exceptional team. 95% of the company's engineers are experienced engineers with backgrounds in spacecraft development, operations, and spacecraft rendezvous. "Nothing like this mission has been attempted since DARPA's Orbital Express, which had a budget more than 20x ours," says Clark. "The size of our team – less than 40 – makes this especially extraordinary." Atomos is deep into the flight vehicle assembly, integration, and testing, with propulsion, rendezvous, docking, and refueling already space qualified.

Click here to learn about the capabilities of Atomos's Orbital Transfer Vehicle.

Publisher: SatNow
Tags:-  SatelliteGround

SpaceX

  • Country: United States
More news from SpaceX

GNSS Constellations - A list of all GNSS satellites by constellations

beidou

Satellite NameOrbit Date
BeiDou-3 G4Geostationary Orbit (GEO)17 May, 2023
BeiDou-3 G2Geostationary Orbit (GEO)09 Mar, 2020
Compass-IGSO7Inclined Geosynchronous Orbit (IGSO)09 Feb, 2020
BeiDou-3 M19Medium Earth Orbit (MEO)16 Dec, 2019
BeiDou-3 M20Medium Earth Orbit (MEO)16 Dec, 2019
BeiDou-3 M21Medium Earth Orbit (MEO)23 Nov, 2019
BeiDou-3 M22Medium Earth Orbit (MEO)23 Nov, 2019
BeiDou-3 I3Inclined Geosynchronous Orbit (IGSO)04 Nov, 2019
BeiDou-3 M23Medium Earth Orbit (MEO)22 Sep, 2019
BeiDou-3 M24Medium Earth Orbit (MEO)22 Sep, 2019

galileo

Satellite NameOrbit Date
GSAT0223MEO - Near-Circular05 Dec, 2021
GSAT0224MEO - Near-Circular05 Dec, 2021
GSAT0219MEO - Near-Circular25 Jul, 2018
GSAT0220MEO - Near-Circular25 Jul, 2018
GSAT0221MEO - Near-Circular25 Jul, 2018
GSAT0222MEO - Near-Circular25 Jul, 2018
GSAT0215MEO - Near-Circular12 Dec, 2017
GSAT0216MEO - Near-Circular12 Dec, 2017
GSAT0217MEO - Near-Circular12 Dec, 2017
GSAT0218MEO - Near-Circular12 Dec, 2017

glonass

Satellite NameOrbit Date
Kosmos 2569--07 Aug, 2023
Kosmos 2564--28 Nov, 2022
Kosmos 2559--10 Oct, 2022
Kosmos 2557--07 Jul, 2022
Kosmos 2547--25 Oct, 2020
Kosmos 2545--16 Mar, 2020
Kosmos 2544--11 Dec, 2019
Kosmos 2534--27 May, 2019
Kosmos 2529--03 Nov, 2018
Kosmos 2527--16 Jun, 2018

gps

Satellite NameOrbit Date
Navstar 82Medium Earth Orbit19 Jan, 2023
Navstar 81Medium Earth Orbit17 Jun, 2021
Navstar 78Medium Earth Orbit22 Aug, 2019
Navstar 77Medium Earth Orbit23 Dec, 2018
Navstar 76Medium Earth Orbit05 Feb, 2016
Navstar 75Medium Earth Orbit31 Oct, 2015
Navstar 74Medium Earth Orbit15 Jul, 2015
Navstar 73Medium Earth Orbit25 Mar, 2015
Navstar 72Medium Earth Orbit29 Oct, 2014
Navstar 71Medium Earth Orbit02 Aug, 2014

irnss

Satellite NameOrbit Date
NVS-01Geostationary Orbit (GEO)29 May, 2023
IRNSS-1IInclined Geosynchronous Orbit (IGSO)12 Apr, 2018
IRNSS-1HSub Geosynchronous Transfer Orbit (Sub-GTO)31 Aug, 2017
IRNSS-1GGeostationary Orbit (GEO)28 Apr, 2016
IRNSS-1FGeostationary Orbit (GEO)10 Mar, 2016
IRNSS-1EGeosynchronous Orbit (IGSO)20 Jan, 2016
IRNSS-1DInclined Geosynchronous Orbit (IGSO)28 Mar, 2015
IRNSS-1CGeostationary Orbit (GEO)16 Oct, 2014
IRNSS-1BInclined Geosynchronous Orbit (IGSO)04 Apr, 2014
IRNSS-1AInclined Geosynchronous Orbit (IGSO)01 Jul, 2013