ISRO Announces the Launch Date for Chandrayaan-3 Lunar Mission

ISRO Announces the Launch Date for Chandrayaan-3 Lunar Mission

The Indian Space Research Organisation is set to launch Chandrayaan-3, India's third lunar mission, and a follow-on mission to Chandrayaan-2. The launch is scheduled for July 14, 2023, at 14:35 Hrs. IST from the Second Launch Pad, SDSC-SHAR, Sriharikota. 

Chandrayaan-3 will demonstrate end-to-end capability in safe landing and roving on the lunar surface. It consists of Lander and Rover configuration and will be launched by LVM3, a geosynchronous satellite launch vehicle. The propulsion module will carry the lander and rover configuration till the 100 km lunar orbit. The propulsion module has a Spectro-polarimetry of Habitable Planet Earth (SHAPE) payload to study the spectral and Polari metric measurements of Earth from the lunar orbit.

On July 5, the encapsulated assembly containing Chandrayaan-3 was mated with the LVM3 launch vehicle at the Satish Dhawan Space Centre in Sriharikota and subsequently, the launch vehicle was moved to the launch pad where all the vehicle electrical tests were completed.

Chandrayaan-3 consists of an indigenous Lander module (LM), a Propulsion module (PM), and a Rover with the objective of developing and demonstrating new technologies required for Interplanetary missions. The Lander will have the capability to soft land at a specified lunar site and deploy the Rover which will carry out in-situ chemical analysis of the lunar surface during the course of its mobility. 

The Lander and the Rover have scientific payloads to carry out experiments on the lunar surface. The main function of the PM is to carry the LM from launch vehicle injection to the final lunar 100 km circular polar orbit and separate the LM from the PM. Apart from this, the Propulsion Module also has one scientific payload as a value addition which will be operated post-separation of the Lander Module. The launcher for Chandrayaan-3 is LVM3 which will place the integrated module in an Elliptic Parking Orbit (EPO) of size ~170 x 36500 km.

Chandrayaan-3 Payloads

Lander payloads: Chandra’s Surface Thermophysical Experiment (ChaSTE) to measure the thermal conductivity and temperature; Instrument for Lunar Seismic Activity (ILSA) for measuring the seismicity around the landing site; Langmuir Probe (LP) to estimate the plasma density and its variations. A passive Laser Retroreflector Array from NASA is accommodated for lunar laser ranging studies.

Rover payloads: Alpha Particle X-ray Spectrometer (APXS) and Laser Induced Breakdown Spectroscope (LIBS) for deriving the elemental composition in the vicinity of the landing site.

The mission objectives of Chandrayaan-3 are:

  • To demonstrate Safe and Soft Landing on Lunar Surface
  • To demonstrate Rover roving on the moon and
  • To conduct in-situ scientific experiments.

To achieve the mission objectives, several advanced technologies are present in Lander such as,

  • Altimeters: Laser & RF based Altimeters
  • Velocimeters: Laser Doppler Velocimeter & Lander Horizontal Velocity Camera
  • Inertial Measurement: Laser Gyro based Inertial referencing and Accelerometer package
  • Propulsion System: 800N Throttleable Liquid Engines, 58N attitude thrusters & Throttleable Engine Control Electronics
  • Navigation, Guidance & Control (NGC): Powered Descent Trajectory design and associate software elements
  • Hazard Detection and Avoidance: Lander Hazard Detection & Avoidance Camera and Processing Algorithm
  • Landing Leg Mechanism.

To demonstrate the above said advanced technologies in earth conditions, several Lander special tests have been planned and carried out successfully viz.

  • Integrated Cold Test - For the demonstration of the Integrated Sensors & Navigation performance test using a helicopter as a test platform
  • Integrated Hot test – For the demonstration of closed-loop performance test with sensors, actuators, and NGC using a Tower crane as a test platform
  • Lander Leg mechanism performance test on a lunar simulant test bed simulating different touch-down conditions.

Click here to learn about ISRO's Launch Services.

Publisher: SatNow

GNSS Constellations - A list of all GNSS satellites by constellations

beidou

Satellite NameOrbit Date
BeiDou-3 G4Geostationary Orbit (GEO)17 May, 2023
BeiDou-3 G2Geostationary Orbit (GEO)09 Mar, 2020
Compass-IGSO7Inclined Geosynchronous Orbit (IGSO)09 Feb, 2020
BeiDou-3 M19Medium Earth Orbit (MEO)16 Dec, 2019
BeiDou-3 M20Medium Earth Orbit (MEO)16 Dec, 2019
BeiDou-3 M21Medium Earth Orbit (MEO)23 Nov, 2019
BeiDou-3 M22Medium Earth Orbit (MEO)23 Nov, 2019
BeiDou-3 I3Inclined Geosynchronous Orbit (IGSO)04 Nov, 2019
BeiDou-3 M23Medium Earth Orbit (MEO)22 Sep, 2019
BeiDou-3 M24Medium Earth Orbit (MEO)22 Sep, 2019

galileo

Satellite NameOrbit Date
GSAT0223MEO - Near-Circular05 Dec, 2021
GSAT0224MEO - Near-Circular05 Dec, 2021
GSAT0219MEO - Near-Circular25 Jul, 2018
GSAT0220MEO - Near-Circular25 Jul, 2018
GSAT0221MEO - Near-Circular25 Jul, 2018
GSAT0222MEO - Near-Circular25 Jul, 2018
GSAT0215MEO - Near-Circular12 Dec, 2017
GSAT0216MEO - Near-Circular12 Dec, 2017
GSAT0217MEO - Near-Circular12 Dec, 2017
GSAT0218MEO - Near-Circular12 Dec, 2017

glonass

Satellite NameOrbit Date
Kosmos 2569--07 Aug, 2023
Kosmos 2564--28 Nov, 2022
Kosmos 2559--10 Oct, 2022
Kosmos 2557--07 Jul, 2022
Kosmos 2547--25 Oct, 2020
Kosmos 2545--16 Mar, 2020
Kosmos 2544--11 Dec, 2019
Kosmos 2534--27 May, 2019
Kosmos 2529--03 Nov, 2018
Kosmos 2527--16 Jun, 2018

gps

Satellite NameOrbit Date
Navstar 82Medium Earth Orbit19 Jan, 2023
Navstar 81Medium Earth Orbit17 Jun, 2021
Navstar 78Medium Earth Orbit22 Aug, 2019
Navstar 77Medium Earth Orbit23 Dec, 2018
Navstar 76Medium Earth Orbit05 Feb, 2016
Navstar 75Medium Earth Orbit31 Oct, 2015
Navstar 74Medium Earth Orbit15 Jul, 2015
Navstar 73Medium Earth Orbit25 Mar, 2015
Navstar 72Medium Earth Orbit29 Oct, 2014
Navstar 71Medium Earth Orbit02 Aug, 2014

irnss

Satellite NameOrbit Date
NVS-01Geostationary Orbit (GEO)29 May, 2023
IRNSS-1IInclined Geosynchronous Orbit (IGSO)12 Apr, 2018
IRNSS-1HSub Geosynchronous Transfer Orbit (Sub-GTO)31 Aug, 2017
IRNSS-1GGeostationary Orbit (GEO)28 Apr, 2016
IRNSS-1FGeostationary Orbit (GEO)10 Mar, 2016
IRNSS-1EGeosynchronous Orbit (IGSO)20 Jan, 2016
IRNSS-1DInclined Geosynchronous Orbit (IGSO)28 Mar, 2015
IRNSS-1CGeostationary Orbit (GEO)16 Oct, 2014
IRNSS-1BInclined Geosynchronous Orbit (IGSO)04 Apr, 2014
IRNSS-1AInclined Geosynchronous Orbit (IGSO)01 Jul, 2013