Blue Origin To Send 36 Experimental Payloads To Space In 23rd Orbital Mission

Blue Origin To Send 36 Experimental Payloads To Space In 23rd Orbital Mission

Blue Origin, a company that envisions to create a sustainable future by developing reusable launch vehicles and in-space systems that are safe, low cost, and serve the needs of all civil, commercial, and defense customers, is set to launch New Shepard’s 23rd mission, a dedicated payloads flight that will fly 36 payloads from academia, research institutions, and students across the globe. The launch window opens at 8:30 AM CDT / 13:30 UTC on August 31, 2022 from Launch Site One in West Texas.

This mission brings the total number of commercial payloads flown on the vehicle to more than 150. Two of the payloads will fly on the exterior of the New Shepard booster for ambient exposure to the space environment. Eighteen of the payloads on this flight are funded by NASA, primarily by the Flight Opportunities program. 

Twenty-four payloads are from K-12 schools, universities, and STEM-focused organizations, including the American Institute of Aeronautics and Astronautics (AIAA), American Society for Gravitational and Space Research (ASGSR), and SHAD Canada STEM Foundation, among others. This is double the number of education-focused payloads from previous payload flight manifests. In many cases, these payloads expose students as young as elementary school to STEM skills like coding, environmental testing, and CAD design often not taught until college.

Among the NS-23 payloads are tens of thousands of postcards from Blue Origin’s nonprofit,?Club for the Future, whose Postcards to Space program gives people across the world access to space on New Shepard. The Club’s mission is to inspire future generations to pursue careers in STEM for the benefit of Earth.?The postcards on this mission come from 19 Club for the Future grant recipients and their partners, including Guayaquil’s Space Society in Ecuador, the U.S. Space and Rocket Center, students who participated in STEM NOLA and Kenner Planetarium events in New Orleans, and schools across Kentucky. 

This will be the fourth flight for the New Shepard program this year, the first dedicated payload flight since NS-17 in August 2021, and the ninth flight for this vehicle, which is dedicated to flying science and research payloads to space. To date, the New Shepard program has flown 31 humans to space.

Academias, Research Institutions, and Schools Involved in this Mission

Infinity Fuel Cell: AMPES

Infinity Fuel Cell’s AMPES experiment demonstrates the operation of hydrogen fuel cell technology in microgravity. The company is collaborating with NASA’s Johnson Space Center in Houston to develop a scalable, modular, and flexible power and energy product utilizing new manufacturing methods to reduce cost and improve reliability. The technology could be used for lunar rovers, surface equipment, and habitats. NASA’s Space Technology Mission Directorate Tipping Point program provided funding. 

Honeybee Robotics: ASSET-1 

ASSET is a testbed designed to study the strength of planetary soils, called regolith, under different gravity conditions. ASSET-1 is the experiment’s first flight on New Shepard and will be tested in microgravity to help determine the soil strength of asteroids, for example. ASSET and its future iterations can also be used to study parameters such as particle sizes and different loading conditions. This experimental payload was developed by Honeybee Robotics in Altadena, Calif., which was acquired by Blue Origin earlier this year, and is funded by NASA's Flight Opportunities program. 

University of Florida: BISS

Principal investigators Rob Ferl and Anna-Lisa Paul adapted technology that was originally designed for the International Space Station to suborbital uses with their experiment, “Biological Imaging in Support of Suborbital Science” (BISS). Through hardware developments and enhancing the way data is collected during the spaceflight, the FLEX fluorescence imaging system enables increasingly precise and dynamic understanding of biological responses to suborbital missions. This will be the fifth flight of the technology development series on New Shepard and includes science collaboration with the University of Wisconsin. Funding was provided by the NASA Flight Opportunities and Biological and Physical Sciences programs. 

NASA Armstrong Flight Research Center: CFOSS

CFOSS is a space-rated Fiber Optic Sensing System (FOSS) technology to measure temperature and strain data to accelerate technology readiness levels before a low-Earth orbit launch. Developed at NASA Armstrong Flight Research Center, this experiment will be the first spaceflight for NASA’s fiber optics-based instrumentation for structural health monitoring. These measurements can enable the monitoring of additional parameters such as structural deformation and cryogenic liquid level estimations. 

OlympiaSpace: ENGARTBOX

ENGARTBOX is a project that integrates engineering, science, and art by attempting to overcome the engineering and scientific challenges of producing a painting in a non-gravity environment. The payload was developed by students and teachers at Anatolia College in Thessaloniki, Greece, in the new Anna Papageorgiou STEM Center of the school, in conjunction with Dr. Takis Papadopoulos. The experiment is sponsored by BETA CAE and Higas, and managed by Dr. Olympia Kyriopoulos from OLYMPIASPACE.

NeoCity Academy: WoS (Wings of Steel)

A group of six high school students from NeoCity Academy in Kissimmee, Florida, is sending a three-minute experiment into microgravity to test the effects of gravity on ultrasonic sound waves. Investigating ultrasonic sound waves and their behavior in space could lead to further future discoveries about other types of waves. 

Johns Hopkins University Applied Physics Laboratory: JANUS-APL

The Johns Hopkins Applied Physics Laboratory (APL) will mount its JANUS payload on the New Shepard Propulsion Module for the first time to measure conditions outside the crew capsule and enable access to the space environment. This new capability will provide important insight into a critical but difficult-to-study region of Earth’s atmosphere as well as facilitate lower cost instrument/technology testing for missions to Earth’s orbit and beyond. APL already has multiple follow-on flights on New Shepard to expand this capability to accommodate telescopes, cameras, and the deployment of very small sensors.

MIT Media Lab: WAX CASTING

The Wax Casting experiment will test how cleaner propellants such as paraffin and beeswax can be fabricated in space in the future. The goal of the experiment is to visualize what happens when two liquids, melted candle wax and a similar liquid called Heptadecane, are rotated. By rotating these liquids in tubes, researchers can begin to understand how a process to form wax into fuel grains could be effective in future hybrid propulsion systems that combine solid fuel with gaseous oxidizers. Many traditional solid space fuels are harmful to people and the environment, while wax is affordable and non-toxic. The payload was developed by researchers at MIT Media Lab's Space Enabled Research Group with support from Tec-Masters, Inc. of Huntsville, AL. Funding was provided by NASA's Space Technology Mission Directorate. 

Titan Space Technologies: T-2 Mission Arroway

Titan Space Technologies is testing their latest advanced AI capabilities on this mission by continuously analyzing data across multiple sensors and adapting their experiment in real time. These results will help Titan advance the development of their AI-powered platform for space experimentation. Titan designed and executed the payload in fewer than 60 days.

Creare, LLC and Dartmouth College: VARD

The VARD payload will demonstrate a novel sensor that measures the volume of liquid in a flexible bladder in microgravity. The sensor and payload were developed at Creare and tested in collaboration with the Geisel School of Medicine at Dartmouth. Funding to develop the sensor was provided by NASA’s Small Business Technology Transfer (STTR) Program.

Click here to learn more about this New Shepard rocket launch system.

Click here to learn more about other launch vehicles and engines from Blue Origin.

Publisher: SatNow

GNSS Constellations - A list of all GNSS satellites by constellations

beidou

Satellite NameOrbit Date
BeiDou-3 G4Geostationary Orbit (GEO)17 May, 2023
BeiDou-3 G2Geostationary Orbit (GEO)09 Mar, 2020
Compass-IGSO7Inclined Geosynchronous Orbit (IGSO)09 Feb, 2020
BeiDou-3 M19Medium Earth Orbit (MEO)16 Dec, 2019
BeiDou-3 M20Medium Earth Orbit (MEO)16 Dec, 2019
BeiDou-3 M21Medium Earth Orbit (MEO)23 Nov, 2019
BeiDou-3 M22Medium Earth Orbit (MEO)23 Nov, 2019
BeiDou-3 I3Inclined Geosynchronous Orbit (IGSO)04 Nov, 2019
BeiDou-3 M23Medium Earth Orbit (MEO)22 Sep, 2019
BeiDou-3 M24Medium Earth Orbit (MEO)22 Sep, 2019

galileo

Satellite NameOrbit Date
GSAT0223MEO - Near-Circular05 Dec, 2021
GSAT0224MEO - Near-Circular05 Dec, 2021
GSAT0219MEO - Near-Circular25 Jul, 2018
GSAT0220MEO - Near-Circular25 Jul, 2018
GSAT0221MEO - Near-Circular25 Jul, 2018
GSAT0222MEO - Near-Circular25 Jul, 2018
GSAT0215MEO - Near-Circular12 Dec, 2017
GSAT0216MEO - Near-Circular12 Dec, 2017
GSAT0217MEO - Near-Circular12 Dec, 2017
GSAT0218MEO - Near-Circular12 Dec, 2017

glonass

Satellite NameOrbit Date
Kosmos 2569--07 Aug, 2023
Kosmos 2564--28 Nov, 2022
Kosmos 2559--10 Oct, 2022
Kosmos 2557--07 Jul, 2022
Kosmos 2547--25 Oct, 2020
Kosmos 2545--16 Mar, 2020
Kosmos 2544--11 Dec, 2019
Kosmos 2534--27 May, 2019
Kosmos 2529--03 Nov, 2018
Kosmos 2527--16 Jun, 2018

gps

Satellite NameOrbit Date
Navstar 82Medium Earth Orbit19 Jan, 2023
Navstar 81Medium Earth Orbit17 Jun, 2021
Navstar 78Medium Earth Orbit22 Aug, 2019
Navstar 77Medium Earth Orbit23 Dec, 2018
Navstar 76Medium Earth Orbit05 Feb, 2016
Navstar 75Medium Earth Orbit31 Oct, 2015
Navstar 74Medium Earth Orbit15 Jul, 2015
Navstar 73Medium Earth Orbit25 Mar, 2015
Navstar 72Medium Earth Orbit29 Oct, 2014
Navstar 71Medium Earth Orbit02 Aug, 2014

irnss

Satellite NameOrbit Date
NVS-01Geostationary Orbit (GEO)29 May, 2023
IRNSS-1IInclined Geosynchronous Orbit (IGSO)12 Apr, 2018
IRNSS-1HSub Geosynchronous Transfer Orbit (Sub-GTO)31 Aug, 2017
IRNSS-1GGeostationary Orbit (GEO)28 Apr, 2016
IRNSS-1FGeostationary Orbit (GEO)10 Mar, 2016
IRNSS-1EGeosynchronous Orbit (IGSO)20 Jan, 2016
IRNSS-1DInclined Geosynchronous Orbit (IGSO)28 Mar, 2015
IRNSS-1CGeostationary Orbit (GEO)16 Oct, 2014
IRNSS-1BInclined Geosynchronous Orbit (IGSO)04 Apr, 2014
IRNSS-1AInclined Geosynchronous Orbit (IGSO)01 Jul, 2013