Pulsar Fusion Partners with Princeton Satellite Systems to Apply Nuclear Fusion Propulsion for Future Space Travel

Pulsar Fusion Partners with Princeton Satellite Systems to Apply Nuclear Fusion Propulsion for Future Space Travel

Pulsar Fusion, developers of clean space propulsion systems and services through fusion, has entered into a partnership with Princeton Satellite Systems (PSS) to apply machine learning to study data from the Princeton field-reverse configuration (PFRC-2) reactor to advance the delivery of practical fusion-propelled spacecraft that can make interstellar space travel practical.

The study will help scientists better understand the behavior of plasma under electromagnetic heating and confinement when configured as an aneutronic fusion propulsion system. The results of the research will determine how a nuclear fusion plasma will behave as it exits a rocket engine, emitting exhaust particles at hundreds of kilometers per second (km/sec). With fusion propulsion, the solar system is realistically within grasp giving us the ability to travel meaningful distances in space within months and years - not in a lifetime.

In the first study of its kind, PSS and Pulsar Fusion will use data from plasma shots generated using the Reversed Configuration PFRC-2 reactor, which was developed in partnership with the Princeton Plasma Physics Laboratory (PPPL). The partnership will apply the most advanced machine learning technologies to analyze the behavior of super-hot fusion plasma in a rocket engine configuration. Specifically, the simulations will assess the performance of nuclear fusion plasma for propulsion as it exits a rocket engine emitting exhaust particles at hundreds of km/sec.

"Humanity has a huge need for faster propulsion in our growing space eonomy, and fusion offers 1,000 times the power of the conventional ion thrusters currently used in orbit," said Richard Dinan, founder and CEO of Pulsar Fusion. "In short, if humans can achieve fusion for energy, then fusion propulsion in space is inevitable. We believe that fusion propulsion will be demonstrated in space decades before we can harness fusion for energy on Earth."

With Direct Fusion Drive (DFD) rocket propulsion, it would be possible to cut the transit time to Mars, Jupiter, and Saturn and even explore beyond the solar system. For example, there is interest in the potential of life on Titan, one of Saturn's moons, and with a single DFD drive, one can make the trip in two years versus decades. DFD drives can produce thrust without the need for an intermediary, electricity-producing step. In a DFD system, the fusion reactor generates energy, creating a plasma of electrically charged particles. Those energetic particles are converted to thrust using a rotating magnetic field. DFD drives are ideal for space travel since the energy produced is clean, virtually limitless, and the drive is relatively compact.

"The Direct Fusion Drive is really a game-changing technology enabling us to reach deep space destinations much faster and with vast amounts of power," said Stephanie Thomas, Vice President of PSS. "NASA is interested in a variety of deep space destinations such as getting to Jupiter in one year, Saturn in two years, Pluto in four to five years. A single, one-megawatt DFD engine can handle any of those missions. It's a dramatically different way to operate deep space missions that will save time and money and enable us to do more science when we get there."

Pulsar Fusion engineers are developing simulations based on gas puffing data from the PFRC-2. The aim is to create predictive ion and electron behavior simulations in a field-reversed configuration (FRC) plasma. Accurate predictive simulations are needed for closed-loop systems, a key component for a future PFRC reactor that could be used for rocket propulsion.

Pulsar Fusion has been developing the technology for 10 years alongside the UK Space Agency. The company is the world leader in nuclear fusion propulsion making space engines that work today.

Click Here to Learn About Pulsar Fusion's Direct Fusion Drive Propulsion.

Click Here to Learn About Research and Development in Direct Fusion Propulsion with the PFRC.


Publisher: SatNow

GNSS Constellations - A list of all GNSS satellites by constellations

beidou

Satellite NameOrbit Date
BeiDou-3 G4Geostationary Orbit (GEO)17 May, 2023
BeiDou-3 G2Geostationary Orbit (GEO)09 Mar, 2020
Compass-IGSO7Inclined Geosynchronous Orbit (IGSO)09 Feb, 2020
BeiDou-3 M19Medium Earth Orbit (MEO)16 Dec, 2019
BeiDou-3 M20Medium Earth Orbit (MEO)16 Dec, 2019
BeiDou-3 M21Medium Earth Orbit (MEO)23 Nov, 2019
BeiDou-3 M22Medium Earth Orbit (MEO)23 Nov, 2019
BeiDou-3 I3Inclined Geosynchronous Orbit (IGSO)04 Nov, 2019
BeiDou-3 M23Medium Earth Orbit (MEO)22 Sep, 2019
BeiDou-3 M24Medium Earth Orbit (MEO)22 Sep, 2019

galileo

Satellite NameOrbit Date
GSAT0223MEO - Near-Circular05 Dec, 2021
GSAT0224MEO - Near-Circular05 Dec, 2021
GSAT0219MEO - Near-Circular25 Jul, 2018
GSAT0220MEO - Near-Circular25 Jul, 2018
GSAT0221MEO - Near-Circular25 Jul, 2018
GSAT0222MEO - Near-Circular25 Jul, 2018
GSAT0215MEO - Near-Circular12 Dec, 2017
GSAT0216MEO - Near-Circular12 Dec, 2017
GSAT0217MEO - Near-Circular12 Dec, 2017
GSAT0218MEO - Near-Circular12 Dec, 2017

glonass

Satellite NameOrbit Date
Kosmos 2569--07 Aug, 2023
Kosmos 2564--28 Nov, 2022
Kosmos 2559--10 Oct, 2022
Kosmos 2557--07 Jul, 2022
Kosmos 2547--25 Oct, 2020
Kosmos 2545--16 Mar, 2020
Kosmos 2544--11 Dec, 2019
Kosmos 2534--27 May, 2019
Kosmos 2529--03 Nov, 2018
Kosmos 2527--16 Jun, 2018

gps

Satellite NameOrbit Date
Navstar 82Medium Earth Orbit19 Jan, 2023
Navstar 81Medium Earth Orbit17 Jun, 2021
Navstar 78Medium Earth Orbit22 Aug, 2019
Navstar 77Medium Earth Orbit23 Dec, 2018
Navstar 76Medium Earth Orbit05 Feb, 2016
Navstar 75Medium Earth Orbit31 Oct, 2015
Navstar 74Medium Earth Orbit15 Jul, 2015
Navstar 73Medium Earth Orbit25 Mar, 2015
Navstar 72Medium Earth Orbit29 Oct, 2014
Navstar 71Medium Earth Orbit02 Aug, 2014

irnss

Satellite NameOrbit Date
NVS-01Geostationary Orbit (GEO)29 May, 2023
IRNSS-1IInclined Geosynchronous Orbit (IGSO)12 Apr, 2018
IRNSS-1HSub Geosynchronous Transfer Orbit (Sub-GTO)31 Aug, 2017
IRNSS-1GGeostationary Orbit (GEO)28 Apr, 2016
IRNSS-1FGeostationary Orbit (GEO)10 Mar, 2016
IRNSS-1EGeosynchronous Orbit (IGSO)20 Jan, 2016
IRNSS-1DInclined Geosynchronous Orbit (IGSO)28 Mar, 2015
IRNSS-1CGeostationary Orbit (GEO)16 Oct, 2014
IRNSS-1BInclined Geosynchronous Orbit (IGSO)04 Apr, 2014
IRNSS-1AInclined Geosynchronous Orbit (IGSO)01 Jul, 2013