ESA's VIPER Experiment Takes Off with Double T-Rex Rocket Launch for Advanced Space Research

ESA's VIPER Experiment Takes Off with Double T-Rex Rocket Launch for Advanced Space Research

Not one, but two rocket launches with ESA-led experiments are flying to the edge of space just a week apart, providing unique data to researchers eager to learn more about fundamental physics, semiconductor production, the formation of planets and how our immune cells react to spaceflight.

A Texus sounding rocket can propel up to 270 km altitude to return to Earth in an elongated arc. As it falls freely, the experiments inside experience weightlessness – six minutes of valuable research time each for these flights, to then land softly on the tundra near the Esrange launch facility in Sweden.

Viper, planets and iron fuel

The first rocket, Texus-58, launched with three ESA-led experiments, all linked with previous research.

The VIPer experiment investigates the interaction between free-floating particles and growing crystals. Several industrial processes, such as growing crystals for solar cells, suffer from an unavoidable amount of dirt, or what scientists call foreign phase particles. This research could improve the quality of the crystalline material.

To analyze what is happening scientists removed gravity from the equation. Silicon is not transparent, so any crystal formation is hard to judge. The VIPer experiment uses water as an analogy for growth processes in the industry. Wim Sillekens, ESA’s materials science lead for Human and Robotic Exploration says, “The idea is a very basic one, but that often makes the experiment very complicated!” In just six minutes the beads were injected and the water frozen, all while being recorded and traveling at supersonic speeds.

Wim Sillekens, ESA’s materials science lead for Human and Robotic Exploration says, “The idea is a very basic one, but that often makes the experiment very complicated!” In just six minutes the beads were injected and the water frozen, all while being recorded and traveling at supersonic speeds.

A second study tries to simulate the first stages of planet formation. It takes thousands of years for dust particles to grow into centimeter-sized clouds in protoplanetary disks. To shorten the timescale, the ICAPS experiment increases the concentration of dust particles and observes their growth within a few minutes using a microscope. The experiment flew on the sounding rocket for the second time equipped with a new instrument to observe how the light scattered.

The experiment flew on the sounding rocket for the second time equipped with a new instrument to observe how the light scattered.

This week’s launch included a continuation of the Perwaves experiment that studies how flames propagate through clouds of iron particles in oxygen and xenon gas. Without the effect of gravity to disrupt the suspensions in glass tubes, the iron flame shows unique behavior's, slowly carving its path through the mixture by jumping from particle to particle instead of burning fuel continuously. 

A unique 3D reconstruction of the flames will allow the researchers to better understand how they and a whole family of waves behave. The data is also important to chart the way for a carbon-free fuel of the future: iron dust. Burn iron dust and you get rust – and a lot of energy. Data from Perwaves can allow engineers to design better burners to extract that energy.

T-Rex on a rocket and double data safari

Next on 1 May, will see the Texus 59 rocket launch with two ESA experiments sharing the ride with another investigation on flame propagation, called Topoflame, from the German Aerospace Center

ESA’s T-REX experiment is an abbreviation for T-cell gene regulation experiment and it will look at how the gene expression system in immune cells responds to the sounding rocket flight. 

Previous experiments showed that it takes just 20 seconds for cells to react to weightlessness. The research team wants to understand how gravity is encoded in our genome.

This flight was a repetition of a previous flight on a sounding rocket in 2015. The difference lies in an integrated and far-reaching analysis. The series is part of a larger effort to understand the process, and it includes experiments on the International Space Station. 

The second ESA experiment is called SaFari and investigates crystal growth in semiconductors. An eight-millimeter silicon crystal will be partly molten and re-crystallised after cooling down. 

Silicon doesn’t melt easily – a furnace will heat the material above 1400°C within a few seconds. Scientists will analyze the inner part of the crystal. The outcome after the six-minute flight will lead to a better understanding of the causes of crystal defects in semiconductors for technological applications. 

“These semiconductor experiments will help create better computer chips and solar panels, as we understand the process to make them better,” concludes Wim.

Click Here to Learn More About the TEXAS-58 Sounding Rocket.

Click Here to Learn More About the Overview of ESA's ICAPS Experiment.

Publisher: SatNow

GNSS Constellations - A list of all GNSS satellites by constellations

beidou

Satellite NameOrbit Date
BeiDou-3 G4Geostationary Orbit (GEO)17 May, 2023
BeiDou-3 G2Geostationary Orbit (GEO)09 Mar, 2020
Compass-IGSO7Inclined Geosynchronous Orbit (IGSO)09 Feb, 2020
BeiDou-3 M19Medium Earth Orbit (MEO)16 Dec, 2019
BeiDou-3 M20Medium Earth Orbit (MEO)16 Dec, 2019
BeiDou-3 M21Medium Earth Orbit (MEO)23 Nov, 2019
BeiDou-3 M22Medium Earth Orbit (MEO)23 Nov, 2019
BeiDou-3 I3Inclined Geosynchronous Orbit (IGSO)04 Nov, 2019
BeiDou-3 M23Medium Earth Orbit (MEO)22 Sep, 2019
BeiDou-3 M24Medium Earth Orbit (MEO)22 Sep, 2019

galileo

Satellite NameOrbit Date
GSAT0223MEO - Near-Circular05 Dec, 2021
GSAT0224MEO - Near-Circular05 Dec, 2021
GSAT0219MEO - Near-Circular25 Jul, 2018
GSAT0220MEO - Near-Circular25 Jul, 2018
GSAT0221MEO - Near-Circular25 Jul, 2018
GSAT0222MEO - Near-Circular25 Jul, 2018
GSAT0215MEO - Near-Circular12 Dec, 2017
GSAT0216MEO - Near-Circular12 Dec, 2017
GSAT0217MEO - Near-Circular12 Dec, 2017
GSAT0218MEO - Near-Circular12 Dec, 2017

glonass

Satellite NameOrbit Date
Kosmos 2569--07 Aug, 2023
Kosmos 2564--28 Nov, 2022
Kosmos 2559--10 Oct, 2022
Kosmos 2557--07 Jul, 2022
Kosmos 2547--25 Oct, 2020
Kosmos 2545--16 Mar, 2020
Kosmos 2544--11 Dec, 2019
Kosmos 2534--27 May, 2019
Kosmos 2529--03 Nov, 2018
Kosmos 2527--16 Jun, 2018

gps

Satellite NameOrbit Date
Navstar 82Medium Earth Orbit19 Jan, 2023
Navstar 81Medium Earth Orbit17 Jun, 2021
Navstar 78Medium Earth Orbit22 Aug, 2019
Navstar 77Medium Earth Orbit23 Dec, 2018
Navstar 76Medium Earth Orbit05 Feb, 2016
Navstar 75Medium Earth Orbit31 Oct, 2015
Navstar 74Medium Earth Orbit15 Jul, 2015
Navstar 73Medium Earth Orbit25 Mar, 2015
Navstar 72Medium Earth Orbit29 Oct, 2014
Navstar 71Medium Earth Orbit02 Aug, 2014

irnss

Satellite NameOrbit Date
NVS-01Geostationary Orbit (GEO)29 May, 2023
IRNSS-1IInclined Geosynchronous Orbit (IGSO)12 Apr, 2018
IRNSS-1HSub Geosynchronous Transfer Orbit (Sub-GTO)31 Aug, 2017
IRNSS-1GGeostationary Orbit (GEO)28 Apr, 2016
IRNSS-1FGeostationary Orbit (GEO)10 Mar, 2016
IRNSS-1EGeosynchronous Orbit (IGSO)20 Jan, 2016
IRNSS-1DInclined Geosynchronous Orbit (IGSO)28 Mar, 2015
IRNSS-1CGeostationary Orbit (GEO)16 Oct, 2014
IRNSS-1BInclined Geosynchronous Orbit (IGSO)04 Apr, 2014
IRNSS-1AInclined Geosynchronous Orbit (IGSO)01 Jul, 2013