Lockheed Martin CubeSats Successfully Validate Essential Maneuvers for On-orbit Servicing

Lockheed Martin CubeSats Successfully Validate Essential Maneuvers for On-orbit Servicing

Lockheed Martin announced that its In-space Upgrade Satellite System (LM LINUSS) accomplished a successful on-orbit demonstration, proving how small satellites can serve an essential role in sustaining critical space architectures. They do this by regularly upgrading existing constellations with new capabilities and extending spacecraft design lifecycles. 

LM LINUSS, a technology demonstration funded internally by Lockheed Martin, is made up of two LM 50 12U CubeSats. While on-orbit, the system demonstrated highly-automated rendezvous and proximity operations (RPO), which enables complicated yet precise maneuvering across multi-satellite constellations. This allows on-orbit servicing coordination and upgrades at scale in any orbit. The RPO demonstration was part of Lockheed Martin's mission to validate essential maneuvering capabilities for future space upgrade and servicing missions.

Close Proximity Maneuvers Set Stage for Future Mission Capabilities

During the demonstration, one of the LM LINUSS CubeSats acted as the designated servicing vehicle, navigating a flight path towards the second CubeSat, which represented the resident space object (RSO). As the servicing vehicle approached the RSO, onboard guidance algorithms made final real-time adjustments to complete its rendezvous operations. Its culminating success was declared when the CubeSats maneuvered in the proximity of one another that demonstrated high confidence in conducting future on-orbit servicing missions for customers.

"The LM LINUSS pathfinder is an excellent example of how Lockheed Martin is investing in innovation in the real world. Agile development, cloud-based operations, and smallsat platforms came together at speed and in orbit, where the real test of technology occurs," said Johnathon Caldwell, Lockheed Martin, vice president and general manager, Military Space. "Through the accomplishments of LM LINUSS, Lockheed Martin is pioneering how future small and medium class missions will be upgraded on-orbit, and continuing to develop critical, breakthrough technologies that keep our customers ahead of ready."

In addition to RPO, the toaster-sized CubeSats also accomplished additional technology demonstrations while on orbit. Several of these include:

  • Performing automated maneuvers and using artificial intelligence to fly coordinated flight paths, supporting a variety of operational conditions.
  • Using Lockheed Martin's Horizon 2.0 command and control (C2) software and advanced RPO software.
  • Maintaining connection with a secure cloud-based architecture for mission telemetry, tracking, and control.
  • Showcasing the company's advanced SmartSat software.
  • Demonstrating miniaturized Space Domain Awareness capabilities.
  • Validating new onboard high-performance processing, low-toxicity propulsion, inertial measurement units, machine vision, and 3D-printed components.

LM LINUSS could be considered the most capable pair of CubeSats in geosynchronous Earth orbit today, based on customer community feedback. The spacecraft have higher bus density, payload accommodation, and on-orbit processing than any other CubeSat, which helps enable revolutionary mission capabilities in the future. Part of Lockheed Martin's LM 50 smallsat family, it is the collaborative integration of the company's mission electro-optical payload deck with a next-generation bus from Terran Orbital Corporation. LM LINUSS and other Lockheed Martin pathfinders are helping create a more sustainable future, safely adding mission life and more.

"This LM LINUSS demonstration was a success for many reasons, including the fact that our team navigated the inherent challenges of a novel technology and validated our software for future missions," said David Barnhart, a technology director at Lockheed Martin Space. "We will leverage what our team learned from LM LINUSS' design, development, and operations to continue advancing Lockheed Martin's innovative vision for on-orbit satellite servicing and upgrades."


Publisher: SatNow
Tags:-  SatelliteLaunchGround

GNSS Constellations - A list of all GNSS satellites by constellations

beidou

Satellite NameOrbit Date
BeiDou-3 G4Geostationary Orbit (GEO)17 May, 2023
BeiDou-3 G2Geostationary Orbit (GEO)09 Mar, 2020
Compass-IGSO7Inclined Geosynchronous Orbit (IGSO)09 Feb, 2020
BeiDou-3 M19Medium Earth Orbit (MEO)16 Dec, 2019
BeiDou-3 M20Medium Earth Orbit (MEO)16 Dec, 2019
BeiDou-3 M21Medium Earth Orbit (MEO)23 Nov, 2019
BeiDou-3 M22Medium Earth Orbit (MEO)23 Nov, 2019
BeiDou-3 I3Inclined Geosynchronous Orbit (IGSO)04 Nov, 2019
BeiDou-3 M23Medium Earth Orbit (MEO)22 Sep, 2019
BeiDou-3 M24Medium Earth Orbit (MEO)22 Sep, 2019

galileo

Satellite NameOrbit Date
GSAT0223MEO - Near-Circular05 Dec, 2021
GSAT0224MEO - Near-Circular05 Dec, 2021
GSAT0219MEO - Near-Circular25 Jul, 2018
GSAT0220MEO - Near-Circular25 Jul, 2018
GSAT0221MEO - Near-Circular25 Jul, 2018
GSAT0222MEO - Near-Circular25 Jul, 2018
GSAT0215MEO - Near-Circular12 Dec, 2017
GSAT0216MEO - Near-Circular12 Dec, 2017
GSAT0217MEO - Near-Circular12 Dec, 2017
GSAT0218MEO - Near-Circular12 Dec, 2017

glonass

Satellite NameOrbit Date
Kosmos 2569--07 Aug, 2023
Kosmos 2564--28 Nov, 2022
Kosmos 2559--10 Oct, 2022
Kosmos 2557--07 Jul, 2022
Kosmos 2547--25 Oct, 2020
Kosmos 2545--16 Mar, 2020
Kosmos 2544--11 Dec, 2019
Kosmos 2534--27 May, 2019
Kosmos 2529--03 Nov, 2018
Kosmos 2527--16 Jun, 2018

gps

Satellite NameOrbit Date
Navstar 82Medium Earth Orbit19 Jan, 2023
Navstar 81Medium Earth Orbit17 Jun, 2021
Navstar 78Medium Earth Orbit22 Aug, 2019
Navstar 77Medium Earth Orbit23 Dec, 2018
Navstar 76Medium Earth Orbit05 Feb, 2016
Navstar 75Medium Earth Orbit31 Oct, 2015
Navstar 74Medium Earth Orbit15 Jul, 2015
Navstar 73Medium Earth Orbit25 Mar, 2015
Navstar 72Medium Earth Orbit29 Oct, 2014
Navstar 71Medium Earth Orbit02 Aug, 2014

irnss

Satellite NameOrbit Date
NVS-01Geostationary Orbit (GEO)29 May, 2023
IRNSS-1IInclined Geosynchronous Orbit (IGSO)12 Apr, 2018
IRNSS-1HSub Geosynchronous Transfer Orbit (Sub-GTO)31 Aug, 2017
IRNSS-1GGeostationary Orbit (GEO)28 Apr, 2016
IRNSS-1FGeostationary Orbit (GEO)10 Mar, 2016
IRNSS-1EGeosynchronous Orbit (IGSO)20 Jan, 2016
IRNSS-1DInclined Geosynchronous Orbit (IGSO)28 Mar, 2015
IRNSS-1CGeostationary Orbit (GEO)16 Oct, 2014
IRNSS-1BInclined Geosynchronous Orbit (IGSO)04 Apr, 2014
IRNSS-1AInclined Geosynchronous Orbit (IGSO)01 Jul, 2013