ESA’s Proba-3 Mission Spacecrafts Fully Integrated and Ready to be Tested

ESA’s Proba-3 Mission Spacecrafts Fully Integrated and Ready to be Tested

The two spacecraft forming ESA’s Proba-3 mission for precise formation flying in orbit are now complete. All the instruments and sensors allowing them to maneuver to millimeter scale precision relative to one another have been integrated aboard, and the pair are fully wrapped in multi-layer insulation – ready to be tested in simulated space conditions.

The pair are currently facing each other across a cleanroom belonging to Redwire Space (formerly QinetiQ Space) in Kruibeke, Belgium, in the same configuration they will adopt in orbit.

To mark the occasion of their integration, the Proba-3 project invited members of ESA’s Belgian and Spanish delegations to visit the facility.

ESA’s Proba-3 mission manager Damien Galano explains: “Proba-3 has contributions from across Europe, but its main coronagraph instrument comes from Belgium’s Centre Spatial de Liège, CSL, and its satellites have been integrated here at Redwire Space. The satellite platforms meanwhile were designed by Airbus Defence and Space in Spain while Spain’s SENER company serves as the prime contractor. So these two countries are very much in the lead for the mission, and this visit gave a chance for their delegations to see this milestone for themselves.”

Also present were representatives from the Proba-3 science team and ESA’s Science Directorate. While Proba-3 is a technology-testing mission, its main payload is a science instrument focused on the Sun which will produce unique data.

During the observation phase of their orbits, the pair will form a straight line in space with the Sun exactly 144 m from each other so that the ‘Occulter’ spacecraft – equipped with a round disk – will cast a shadow onto the second ‘Coronagraph’ spacecraft.

By doing so the Occulter will block out the brilliant solar disk to allow the Coronagraph to image the wispy outer atmosphere of the Sun, known as its corona, for up to six hours at a time.

On Earth, the corona is visible only for a few moments during rare solar eclipses, but the availability of sustained observation should address many mysteries of the solar corona – including why it is a million degrees C hotter than the surface of the Sun that it radiates from.

Jorg Versluys, a payload system engineer, adds: ‘Ground and space observatories often incorporate Sun-blocking coronagraphs – the ESA-NASA SOHO spacecraft is one famous example – but their effectiveness is limited by light spilling around disk edges, a phenomenon called diffraction. By hosting our coronagraph on a separate spacecraft we reduce diffraction and increase the overall visibility of the Sun’s surroundings. And looking closely at the Occulter’s edge shows that it has been precisely curved to reduce diffraction effects still further.”

Sustained observations will only be made possible by the spacecraft entering formation for a prolonged period of time, enabled in turn by an onboard suite of guidance and control methods, including satellite navigation receivers, radio inter-satellite links, lasers, and optical cameras.

Damien notes: “The latter will be guided by light emitting displays placed on the face of both spacecraft for the other to see. In fact, one of the reasons the spacecraft’s multi-layer insulation is black is to ensure maximum contrast with the onboard LEDs so the cameras can observe them clearly.”

The satellite pair will fly on a highly elongated (or ‘elliptical’) 19-and-a-half-hour orbit that will see them venture a maximum 6 0530 km away from Earth – performing observations at the top of each orbit to minimize gravitational and illumination effects from our planet. For the rest of their orbit, they will be free flying with respect to each other.

Next month the spacecraft will be shipped to IABG in Germany for the start of a four-month environmental test campaign, simulating every aspect of the launch and space environments. Proba-3 is due to be flown by PSLV launcher from India next year.

Click here to learn the PROBA-3 (Project for On-Board Autonomy-3) mission.

Publisher: SatNow
Tags:-  SatelliteLaunchSensorsGround

GNSS Constellations - A list of all GNSS satellites by constellations

beidou

Satellite NameOrbit Date
BeiDou-3 G4Geostationary Orbit (GEO)17 May, 2023
BeiDou-3 G2Geostationary Orbit (GEO)09 Mar, 2020
Compass-IGSO7Inclined Geosynchronous Orbit (IGSO)09 Feb, 2020
BeiDou-3 M19Medium Earth Orbit (MEO)16 Dec, 2019
BeiDou-3 M20Medium Earth Orbit (MEO)16 Dec, 2019
BeiDou-3 M21Medium Earth Orbit (MEO)23 Nov, 2019
BeiDou-3 M22Medium Earth Orbit (MEO)23 Nov, 2019
BeiDou-3 I3Inclined Geosynchronous Orbit (IGSO)04 Nov, 2019
BeiDou-3 M23Medium Earth Orbit (MEO)22 Sep, 2019
BeiDou-3 M24Medium Earth Orbit (MEO)22 Sep, 2019

galileo

Satellite NameOrbit Date
GSAT0223MEO - Near-Circular05 Dec, 2021
GSAT0224MEO - Near-Circular05 Dec, 2021
GSAT0219MEO - Near-Circular25 Jul, 2018
GSAT0220MEO - Near-Circular25 Jul, 2018
GSAT0221MEO - Near-Circular25 Jul, 2018
GSAT0222MEO - Near-Circular25 Jul, 2018
GSAT0215MEO - Near-Circular12 Dec, 2017
GSAT0216MEO - Near-Circular12 Dec, 2017
GSAT0217MEO - Near-Circular12 Dec, 2017
GSAT0218MEO - Near-Circular12 Dec, 2017

glonass

Satellite NameOrbit Date
Kosmos 2569--07 Aug, 2023
Kosmos 2564--28 Nov, 2022
Kosmos 2559--10 Oct, 2022
Kosmos 2557--07 Jul, 2022
Kosmos 2547--25 Oct, 2020
Kosmos 2545--16 Mar, 2020
Kosmos 2544--11 Dec, 2019
Kosmos 2534--27 May, 2019
Kosmos 2529--03 Nov, 2018
Kosmos 2527--16 Jun, 2018

gps

Satellite NameOrbit Date
Navstar 82Medium Earth Orbit19 Jan, 2023
Navstar 81Medium Earth Orbit17 Jun, 2021
Navstar 78Medium Earth Orbit22 Aug, 2019
Navstar 77Medium Earth Orbit23 Dec, 2018
Navstar 76Medium Earth Orbit05 Feb, 2016
Navstar 75Medium Earth Orbit31 Oct, 2015
Navstar 74Medium Earth Orbit15 Jul, 2015
Navstar 73Medium Earth Orbit25 Mar, 2015
Navstar 72Medium Earth Orbit29 Oct, 2014
Navstar 71Medium Earth Orbit02 Aug, 2014

irnss

Satellite NameOrbit Date
NVS-01Geostationary Orbit (GEO)29 May, 2023
IRNSS-1IInclined Geosynchronous Orbit (IGSO)12 Apr, 2018
IRNSS-1HSub Geosynchronous Transfer Orbit (Sub-GTO)31 Aug, 2017
IRNSS-1GGeostationary Orbit (GEO)28 Apr, 2016
IRNSS-1FGeostationary Orbit (GEO)10 Mar, 2016
IRNSS-1EGeosynchronous Orbit (IGSO)20 Jan, 2016
IRNSS-1DInclined Geosynchronous Orbit (IGSO)28 Mar, 2015
IRNSS-1CGeostationary Orbit (GEO)16 Oct, 2014
IRNSS-1BInclined Geosynchronous Orbit (IGSO)04 Apr, 2014
IRNSS-1AInclined Geosynchronous Orbit (IGSO)01 Jul, 2013