Microchip Introduces Rad-Tolerant Power Management IC for LEO Applications

Microchip Introduces Rad-Tolerant Power Management IC for LEO Applications

The commercialization of the Low-Earth Orbit (LEO) region is transforming space exploration and satellite communication at roughly 1,200 miles above Earth. For satellites to successfully operate and reach their destination, it is essential to select components that can withstand the harsh space environment. Building on its existing radiation-tolerant portfolio, Microchip Technology has announced the introduction of its first commercial-off-the-shelf (COTS) rad-tolerant power device with the MIC69303RT 3A Low-Dropout (LDO) Voltage Regulator. The new high-current, low-voltage MIC69303RT is a power management solution targeting LEO and other space applications. The device is available for prototype sampling in both plastic and hermetic ceramic to support the requirements of the mission.

The MIC69303RT is based on proven COTS devices, making it easier to conduct preliminary evaluation and early development. Operating from a single low-voltage supply of 1.65 to 5.5 volts, the device can supply output voltages as low as 0.5V at high currents, offering high-precision and ultra-low dropout voltages of 500 mV under extreme conditions. The MIC69303RT is a companion power source solution for Microchip’s radiation-tolerant space-qualified microcontrollers such as the SAM71Q21RT and PolarFire FPGAs including the RTPF500TLS.

“The MIC69303RT is Microchip’s first rad-tolerant power management device with a hermetic ceramic package, latch-up immunity and 50 Krad total dose robustness,” said Bob Vampola, vice president of Microchip’s aerospace and defense business unit. “Microchip has over 60 years of space flight heritage in a comprehensive portfolio that allows customers to choose products designed to work together and accelerate their design processes.”

“This COTS rad-tolerant power management solution enables new design possibilities in space applications,” said Keith Pazul, director of marketing for Microchip’s analog power and interface business unit. “Customers can design their space system with confidence by selecting the COTS MIC69303RT space-qualified part to power Microchip space-qualified MCUs and FPGAs.”  

Designed for harsh aerospace applications, the MIC69303RT is operational in temperature ranges from -55°C to +125°C. It is offered in 8-pin and 10-pin package configurations with radiation tolerance up to 50 Krad. The low noise of the output is critical to sensitive RF circuits, post regulation of switching power supplies and industrial power applications.

The MIC69303RT device is the newest space-qualified product by Microchip and is manufactured in compliance with the following MIL Class Q or Class V requirements: screening testing, qualification testing and TCI/QCI specifications. The plastic MIC69303RT is compliant with high-reliability plastic quality flow derived from AEC-Q100 automotive requirements with specific additional tests necessary for space applications.

Development Tools

The MIC69303RT Plastic Evaluation Board is designed to evaluate the performance of the plastic engineering IC version for the MIC69303RT. The 4-layer PCB allows the user to easily change and measure the electric parameters of the device at different input and output conditions.

Click here to learn more about Microchip Technology's MIC69303RT 3A Low-Dropout (LDO) Voltage Regulator.

Publisher: SatNow
Tags:-  SatelliteLEO

GNSS Constellations - A list of all GNSS satellites by constellations

beidou

Satellite NameOrbit Date
BeiDou-3 G4Geostationary Orbit (GEO)17 May, 2023
BeiDou-3 G2Geostationary Orbit (GEO)09 Mar, 2020
Compass-IGSO7Inclined Geosynchronous Orbit (IGSO)09 Feb, 2020
BeiDou-3 M19Medium Earth Orbit (MEO)16 Dec, 2019
BeiDou-3 M20Medium Earth Orbit (MEO)16 Dec, 2019
BeiDou-3 M21Medium Earth Orbit (MEO)23 Nov, 2019
BeiDou-3 M22Medium Earth Orbit (MEO)23 Nov, 2019
BeiDou-3 I3Inclined Geosynchronous Orbit (IGSO)04 Nov, 2019
BeiDou-3 M23Medium Earth Orbit (MEO)22 Sep, 2019
BeiDou-3 M24Medium Earth Orbit (MEO)22 Sep, 2019

galileo

Satellite NameOrbit Date
GSAT0223MEO - Near-Circular05 Dec, 2021
GSAT0224MEO - Near-Circular05 Dec, 2021
GSAT0219MEO - Near-Circular25 Jul, 2018
GSAT0220MEO - Near-Circular25 Jul, 2018
GSAT0221MEO - Near-Circular25 Jul, 2018
GSAT0222MEO - Near-Circular25 Jul, 2018
GSAT0215MEO - Near-Circular12 Dec, 2017
GSAT0216MEO - Near-Circular12 Dec, 2017
GSAT0217MEO - Near-Circular12 Dec, 2017
GSAT0218MEO - Near-Circular12 Dec, 2017

glonass

Satellite NameOrbit Date
Kosmos 2569--07 Aug, 2023
Kosmos 2564--28 Nov, 2022
Kosmos 2559--10 Oct, 2022
Kosmos 2557--07 Jul, 2022
Kosmos 2547--25 Oct, 2020
Kosmos 2545--16 Mar, 2020
Kosmos 2544--11 Dec, 2019
Kosmos 2534--27 May, 2019
Kosmos 2529--03 Nov, 2018
Kosmos 2527--16 Jun, 2018

gps

Satellite NameOrbit Date
Navstar 82Medium Earth Orbit19 Jan, 2023
Navstar 81Medium Earth Orbit17 Jun, 2021
Navstar 78Medium Earth Orbit22 Aug, 2019
Navstar 77Medium Earth Orbit23 Dec, 2018
Navstar 76Medium Earth Orbit05 Feb, 2016
Navstar 75Medium Earth Orbit31 Oct, 2015
Navstar 74Medium Earth Orbit15 Jul, 2015
Navstar 73Medium Earth Orbit25 Mar, 2015
Navstar 72Medium Earth Orbit29 Oct, 2014
Navstar 71Medium Earth Orbit02 Aug, 2014

irnss

Satellite NameOrbit Date
NVS-01Geostationary Orbit (GEO)29 May, 2023
IRNSS-1IInclined Geosynchronous Orbit (IGSO)12 Apr, 2018
IRNSS-1HSub Geosynchronous Transfer Orbit (Sub-GTO)31 Aug, 2017
IRNSS-1GGeostationary Orbit (GEO)28 Apr, 2016
IRNSS-1FGeostationary Orbit (GEO)10 Mar, 2016
IRNSS-1EGeosynchronous Orbit (IGSO)20 Jan, 2016
IRNSS-1DInclined Geosynchronous Orbit (IGSO)28 Mar, 2015
IRNSS-1CGeostationary Orbit (GEO)16 Oct, 2014
IRNSS-1BInclined Geosynchronous Orbit (IGSO)04 Apr, 2014
IRNSS-1AInclined Geosynchronous Orbit (IGSO)01 Jul, 2013