NASA Announces Coverage for Intuitive Machines' Second Private Moon Landing

NASA Announces Coverage for Intuitive Machines' Second Private Moon Landing

Intuitive Machines, carrying NASA technology demonstrations and science investigations, is targeting their Moon landing no earlier than 12:32 p.m. EST on Thursday, March 6. The company's Nova-C lunar lander is slated to land in Mons Mouton, a lunar plateau near the Moon's South Pole, as part of NASA's CLPS (Commercial Lunar Payload Services) initiative and Artemis campaign to establish a long-term lunar presence.

Live landing coverage of the Intuitive Machines 2 (IM-2) landing, hosted by NASA and Intuitive Machines, on NASA+ will start approximately 60 minutes before touchdown. Following the Moon landing, NASA and Intuitive Machines will host a news conference from NASA's Johnson Space Center in Houston to discuss the mission, technology demonstrations, and science opportunities that lie ahead as lunar surface operations begin.

Full coverage of the IM-2 mission includes (all times Eastern):

Thursday, March 6

  • 11:30 a.m. – Landing coverage begins on NASA+
  • 12:32 p.m. – Landing
  • 4 p.m.        – Post-landing news conference on NASA+

After landing, NASA and Intuitive Machines leaders will participate in the news conference: 

  • Nicky Fox, associate administrator, Science Mission Directorate, NASA Headquarters
  • Clayton Turner, associate administrator, Space Technology Mission Directorate, NASA Headquarters
  • Joel Kearns, deputy associate administrator for exploration, Science Mission Directorate, NASA Headquarters
  • Steve Altemus, CEO, Intuitive Machines
  • Tim Crain, chief growth officer, Intuitive Machines

NASA's Artemis SeriesClick here to learn more!

The IM-2 mission launched at 7:16 p.m. Feb. 26 on a SpaceX Falcon 9 rocket from Launch Complex 39A at NASA's Kennedy Space Center in Florida. The lander is carrying NASA technology that will measure the potential presence of resources from lunar soil that could be extracted and used by future explorers to produce fuel or breathable oxygen.

In addition, a passive Laser Retroreflector Array on the top deck of the lander will bounce laser light back at any orbiting or incoming spacecraft to give future spacecraft a permanent reference point on the lunar surface. Other technologies on this delivery will demonstrate a robust cellular network to help future astronauts communicate and deploy a propulsive drone that can hop across the lunar surface to navigate its challenging terrain.

NASA continues to work with multiple American companies to deliver technology and science to the lunar surface through the agency's CLPS initiative. This pool of companies may bid on contracts for end-to-end lunar delivery services, including payload integration and operations, launching from Earth, and landing on the surface of the Moon. NASA's CLPS contracts are indefinite-delivery/indefinite-quantity contracts with a cumulative maximum value of $2.6 billion through 2028. The agency awarded Intuitive Machines the contract to send NASA science investigations and technology demonstrations to the Moon using its American-designed and -manufactured lunar lander for approximately $62.5 million.

Through the Artemis campaign, commercial robotic deliveries will test technologies, perform science experiments, and demonstrate capabilities on and around the Moon to help NASA explore in advance of Artemis Generation astronaut missions to the lunar surface, and ultimately crewed missions to Mars.

Click here to learn more about Intuitive Machine's NOVA-D

Publisher: SatNow
Tags:-  LaunchGround

SpaceX

  • Country: United States
More news from SpaceX

GNSS Constellations - A list of all GNSS satellites by constellations

beidou

Satellite NameOrbit Date
BeiDou-3 G4Geostationary Orbit (GEO)17 May, 2023
BeiDou-3 G2Geostationary Orbit (GEO)09 Mar, 2020
Compass-IGSO7Inclined Geosynchronous Orbit (IGSO)09 Feb, 2020
BeiDou-3 M19Medium Earth Orbit (MEO)16 Dec, 2019
BeiDou-3 M20Medium Earth Orbit (MEO)16 Dec, 2019
BeiDou-3 M21Medium Earth Orbit (MEO)23 Nov, 2019
BeiDou-3 M22Medium Earth Orbit (MEO)23 Nov, 2019
BeiDou-3 I3Inclined Geosynchronous Orbit (IGSO)04 Nov, 2019
BeiDou-3 M23Medium Earth Orbit (MEO)22 Sep, 2019
BeiDou-3 M24Medium Earth Orbit (MEO)22 Sep, 2019

galileo

Satellite NameOrbit Date
GSAT0223MEO - Near-Circular05 Dec, 2021
GSAT0224MEO - Near-Circular05 Dec, 2021
GSAT0219MEO - Near-Circular25 Jul, 2018
GSAT0220MEO - Near-Circular25 Jul, 2018
GSAT0221MEO - Near-Circular25 Jul, 2018
GSAT0222MEO - Near-Circular25 Jul, 2018
GSAT0215MEO - Near-Circular12 Dec, 2017
GSAT0216MEO - Near-Circular12 Dec, 2017
GSAT0217MEO - Near-Circular12 Dec, 2017
GSAT0218MEO - Near-Circular12 Dec, 2017

glonass

Satellite NameOrbit Date
Kosmos 2569--07 Aug, 2023
Kosmos 2564--28 Nov, 2022
Kosmos 2559--10 Oct, 2022
Kosmos 2557--07 Jul, 2022
Kosmos 2547--25 Oct, 2020
Kosmos 2545--16 Mar, 2020
Kosmos 2544--11 Dec, 2019
Kosmos 2534--27 May, 2019
Kosmos 2529--03 Nov, 2018
Kosmos 2527--16 Jun, 2018

gps

Satellite NameOrbit Date
Navstar 82Medium Earth Orbit19 Jan, 2023
Navstar 81Medium Earth Orbit17 Jun, 2021
Navstar 78Medium Earth Orbit22 Aug, 2019
Navstar 77Medium Earth Orbit23 Dec, 2018
Navstar 76Medium Earth Orbit05 Feb, 2016
Navstar 75Medium Earth Orbit31 Oct, 2015
Navstar 74Medium Earth Orbit15 Jul, 2015
Navstar 73Medium Earth Orbit25 Mar, 2015
Navstar 72Medium Earth Orbit29 Oct, 2014
Navstar 71Medium Earth Orbit02 Aug, 2014

irnss

Satellite NameOrbit Date
NVS-01Geostationary Orbit (GEO)29 May, 2023
IRNSS-1IInclined Geosynchronous Orbit (IGSO)12 Apr, 2018
IRNSS-1HSub Geosynchronous Transfer Orbit (Sub-GTO)31 Aug, 2017
IRNSS-1GGeostationary Orbit (GEO)28 Apr, 2016
IRNSS-1FGeostationary Orbit (GEO)10 Mar, 2016
IRNSS-1EGeosynchronous Orbit (IGSO)20 Jan, 2016
IRNSS-1DInclined Geosynchronous Orbit (IGSO)28 Mar, 2015
IRNSS-1CGeostationary Orbit (GEO)16 Oct, 2014
IRNSS-1BInclined Geosynchronous Orbit (IGSO)04 Apr, 2014
IRNSS-1AInclined Geosynchronous Orbit (IGSO)01 Jul, 2013