SpaceX to Develop Starship Human Landing System for NASA's Artemis Moon Mission

SpaceX to Develop Starship Human Landing System for NASA's Artemis Moon Mission

NASA has awarded a contract modification to SpaceX to further develop its Starship human landing system to meet agency requirements for long-term human exploration of the Moon under Artemis. With this addition, SpaceX will provide a second crewed landing demonstration mission in 2027 as part of NASA’s Artemis IV mission.

“Returning astronauts to the Moon to learn, live, and work is a bold endeavor. With multiple planned landers, from SpaceX and future partners, NASA will be better positioned to accomplish the missions of tomorrow: conducting more science on the surface of the Moon than ever before and preparing for crewed missions to Mars,” said NASA Administrator Bill Nelson.

Known as Option B, the modification follows an award to SpaceX in July 2021 under the Next Space Technologies for Exploration Partnerships-2 (NextSTEP-2) Appendix H Option A contract. NASA previously announced plans to pursue this Option B with SpaceX. The contract modification has a value of about $1.15 billion.

“Continuing our collaborative efforts with SpaceX through Option B furthers our resilient plans for regular crewed transportation to the lunar surface and establishing a long-term human presence under Artemis,” said Lisa Watson-Morgan, manager for the Human Landing System program at NASA’s Marshall Space Flight Center in Huntsville, Alabama. “This critical work will help us focus on the development of sustainable, service-based lunar landers anchored to NASA’s requirements for regularly recurring missions to the lunar surface.”

The aim of this new work under Option B is to develop and demonstrate a Starship lunar lander that meets NASA’s sustaining requirements for missions beyond Artemis III, including docking with Gateway, accommodating four crew members, and delivering more mass to the surface.

NASA initially selected SpaceX to develop a human landing system variant of Starship to land the next American astronauts on the Moon under Artemis III, which will mark humanity’s first return to the lunar surface in more than 50 years. As part of that contract, SpaceX will also conduct an uncrewed demonstration mission to the Moon prior to Artemis III.

The agency is pursuing two parallel paths for human lunar landers developed according to NASA’s sustained requirements to increase the competitive pool of capable industry providers – the existing contract with SpaceX and another solicitation released earlier this year. The other solicitation, NextSTEP-2 Appendix P, is open to all other U.S. companies to develop additional human landing system capabilities and includes uncrewed and crewed demonstration missions from lunar orbit to the surface of the Moon.

Astronaut Moon landers are a vital part of NASA’s deep space exploration plans, along with the Space Launch System rocket, Orion spacecraft, ground systems, spacesuits and rovers, and Gateway.

Under Artemis, NASA  will send a suite of new lunar science instruments and technology demonstrations to study the Moon, land the first woman and first person of color on the lunar surface, establish a long-term lunar presence, and more. The agency will leverage its Artemis experiences and technologies to prepare for the next giant leap – sending astronauts to Mars.

Click here to learn about the Artemis Mission.

Click here to learn about NASA's Human Landing System Program.

Publisher: SatNow
Tags:-  LaunchGlobal

SpaceX

  • Country: United States
More news from SpaceX

GNSS Constellations - A list of all GNSS satellites by constellations

beidou

Satellite NameOrbit Date
BeiDou-3 G4Geostationary Orbit (GEO)17 May, 2023
BeiDou-3 G2Geostationary Orbit (GEO)09 Mar, 2020
Compass-IGSO7Inclined Geosynchronous Orbit (IGSO)09 Feb, 2020
BeiDou-3 M19Medium Earth Orbit (MEO)16 Dec, 2019
BeiDou-3 M20Medium Earth Orbit (MEO)16 Dec, 2019
BeiDou-3 M21Medium Earth Orbit (MEO)23 Nov, 2019
BeiDou-3 M22Medium Earth Orbit (MEO)23 Nov, 2019
BeiDou-3 I3Inclined Geosynchronous Orbit (IGSO)04 Nov, 2019
BeiDou-3 M23Medium Earth Orbit (MEO)22 Sep, 2019
BeiDou-3 M24Medium Earth Orbit (MEO)22 Sep, 2019

galileo

Satellite NameOrbit Date
GSAT0223MEO - Near-Circular05 Dec, 2021
GSAT0224MEO - Near-Circular05 Dec, 2021
GSAT0219MEO - Near-Circular25 Jul, 2018
GSAT0220MEO - Near-Circular25 Jul, 2018
GSAT0221MEO - Near-Circular25 Jul, 2018
GSAT0222MEO - Near-Circular25 Jul, 2018
GSAT0215MEO - Near-Circular12 Dec, 2017
GSAT0216MEO - Near-Circular12 Dec, 2017
GSAT0217MEO - Near-Circular12 Dec, 2017
GSAT0218MEO - Near-Circular12 Dec, 2017

glonass

Satellite NameOrbit Date
Kosmos 2569--07 Aug, 2023
Kosmos 2564--28 Nov, 2022
Kosmos 2559--10 Oct, 2022
Kosmos 2557--07 Jul, 2022
Kosmos 2547--25 Oct, 2020
Kosmos 2545--16 Mar, 2020
Kosmos 2544--11 Dec, 2019
Kosmos 2534--27 May, 2019
Kosmos 2529--03 Nov, 2018
Kosmos 2527--16 Jun, 2018

gps

Satellite NameOrbit Date
Navstar 82Medium Earth Orbit19 Jan, 2023
Navstar 81Medium Earth Orbit17 Jun, 2021
Navstar 78Medium Earth Orbit22 Aug, 2019
Navstar 77Medium Earth Orbit23 Dec, 2018
Navstar 76Medium Earth Orbit05 Feb, 2016
Navstar 75Medium Earth Orbit31 Oct, 2015
Navstar 74Medium Earth Orbit15 Jul, 2015
Navstar 73Medium Earth Orbit25 Mar, 2015
Navstar 72Medium Earth Orbit29 Oct, 2014
Navstar 71Medium Earth Orbit02 Aug, 2014

irnss

Satellite NameOrbit Date
NVS-01Geostationary Orbit (GEO)29 May, 2023
IRNSS-1IInclined Geosynchronous Orbit (IGSO)12 Apr, 2018
IRNSS-1HSub Geosynchronous Transfer Orbit (Sub-GTO)31 Aug, 2017
IRNSS-1GGeostationary Orbit (GEO)28 Apr, 2016
IRNSS-1FGeostationary Orbit (GEO)10 Mar, 2016
IRNSS-1EGeosynchronous Orbit (IGSO)20 Jan, 2016
IRNSS-1DInclined Geosynchronous Orbit (IGSO)28 Mar, 2015
IRNSS-1CGeostationary Orbit (GEO)16 Oct, 2014
IRNSS-1BInclined Geosynchronous Orbit (IGSO)04 Apr, 2014
IRNSS-1AInclined Geosynchronous Orbit (IGSO)01 Jul, 2013