NASA Reveals Nine Potential Landing Sites for Artemis III Near Lunar South Pole

NASA Reveals Nine Potential Landing Sites for Artemis III Near Lunar South Pole

As NASA prepares for the first crewed Moon landing in more than five decades, the agency has identified an updated set of nine potential landing regions near the lunar South Pole for its Artemis III mission. These areas will be further investigated through scientific and engineering studies. NASA will continue to survey potential areas for missions following Artemis III, including areas beyond these nine regions.

Artemis will return humanity to the Moon and visit unexplored areas. NASA’s selection of these regions shows our commitment to landing crew safely near the lunar South Pole, where they will help uncover new scientific discoveries and learn to live on the lunar surface,” said Lakiesha Hawkins, assistant deputy associate administrator, Moon to Mars Program Office.

NASA’s Cross Agency Site Selection Analysis team, working closely with science and industry partners, added, and excluded potential landing regions, which were assessed for their science value and mission availability.

The refined candidate Artemis III lunar landing regions are, in no priority order:

  • Peak near Cabeus B
  • Haworth
  • Malapert Massif
  • Mons Mouton Plateau
  • Mons Mouton
  • Nobile Rim 1
  • Nobile Rim 2
  • de Gerlache Rim 2
  • Slater Plain

These regions contain diverse geological characteristics and offer flexibility for mission availability. The lunar South Pole has never been explored by a crewed mission and contains permanently shadowed areas that can preserve resources, including water.

“The Moon’s South Pole is a completely different environment than where we landed during the Apollo missions,” said Sarah Noble, Artemis lunar science lead at NASA Headquarters in Washington. “It offers access to some of the Moon’s oldest terrain, as well as cold, shadowed regions that may contain water and other compounds. Any of these landing regions will enable us to do amazing science and make new discoveries.”

To select these landing regions, a multidisciplinary team of scientists and engineers analyzed the lunar South Pole region using data from NASA’s Lunar Reconnaissance Orbiter and a vast body of lunar science research. Factors in the selection process included science potential, launch window availability, terrain suitability, communication capabilities with Earth, and lighting conditions. Additionally, the team assessed the combined trajectory capabilities of NASA’s SLS (Space Launch System) rocket, the Orion spacecraft, and Starship HLS (Human Landing System) to ensure safe and accessible landing sites.

The Artemis III geology team evaluated the landing regions for their scientific promise. Sites within each of the nine identified regions have the potential to provide key new insights into our understanding of rocky planets, lunar resources, and the history of our solar system.

Artemis III will be the first time that astronauts will land in the south polar region of the Moon. They will be flying on a new lander into a terrain that is unique from our past Apollo experience,” said Jacob Bleacher, NASA’s chief exploration scientist. “Finding the right locations for this historic moment begins with identifying safe places for this first landing, and then trying to match that with opportunities for science from this new place on the Moon.”

NASA’s site assessment team will engage the lunar science community through conferences and workshops to gather data, build geologic maps, and assess the regional geology of eventual landing sites. The team also will continue surveying the entire lunar South Pole region for science value and mission availability for future Artemis missions. This will include planning for expanded science opportunities during Artemis IV, and suitability for the LTV (Lunar Terrain Vehicle) as part of Artemis V.

The agency will select sites within regions for Artemis III after it identifies the mission’s target launch dates, which dictate transfer trajectories, or orbital paths, and surface environment conditions.

Under NASA’s Artemis campaign, the agency will establish the foundation for long-term scientific exploration at the Moon, land the first woman, first person of color, and its first international partner astronaut on the lunar surface, and prepare for human expeditions to Mars for the benefit of all.

Click here to know more about NASA's Upcoming Launches & Landings

Publisher: SatNow
Tags:-  LaunchGround

GNSS Constellations - A list of all GNSS satellites by constellations

beidou

Satellite NameOrbit Date
BeiDou-3 G4Geostationary Orbit (GEO)17 May, 2023
BeiDou-3 G2Geostationary Orbit (GEO)09 Mar, 2020
Compass-IGSO7Inclined Geosynchronous Orbit (IGSO)09 Feb, 2020
BeiDou-3 M19Medium Earth Orbit (MEO)16 Dec, 2019
BeiDou-3 M20Medium Earth Orbit (MEO)16 Dec, 2019
BeiDou-3 M21Medium Earth Orbit (MEO)23 Nov, 2019
BeiDou-3 M22Medium Earth Orbit (MEO)23 Nov, 2019
BeiDou-3 I3Inclined Geosynchronous Orbit (IGSO)04 Nov, 2019
BeiDou-3 M23Medium Earth Orbit (MEO)22 Sep, 2019
BeiDou-3 M24Medium Earth Orbit (MEO)22 Sep, 2019

galileo

Satellite NameOrbit Date
GSAT0223MEO - Near-Circular05 Dec, 2021
GSAT0224MEO - Near-Circular05 Dec, 2021
GSAT0219MEO - Near-Circular25 Jul, 2018
GSAT0220MEO - Near-Circular25 Jul, 2018
GSAT0221MEO - Near-Circular25 Jul, 2018
GSAT0222MEO - Near-Circular25 Jul, 2018
GSAT0215MEO - Near-Circular12 Dec, 2017
GSAT0216MEO - Near-Circular12 Dec, 2017
GSAT0217MEO - Near-Circular12 Dec, 2017
GSAT0218MEO - Near-Circular12 Dec, 2017

glonass

Satellite NameOrbit Date
Kosmos 2569--07 Aug, 2023
Kosmos 2564--28 Nov, 2022
Kosmos 2559--10 Oct, 2022
Kosmos 2557--07 Jul, 2022
Kosmos 2547--25 Oct, 2020
Kosmos 2545--16 Mar, 2020
Kosmos 2544--11 Dec, 2019
Kosmos 2534--27 May, 2019
Kosmos 2529--03 Nov, 2018
Kosmos 2527--16 Jun, 2018

gps

Satellite NameOrbit Date
Navstar 82Medium Earth Orbit19 Jan, 2023
Navstar 81Medium Earth Orbit17 Jun, 2021
Navstar 78Medium Earth Orbit22 Aug, 2019
Navstar 77Medium Earth Orbit23 Dec, 2018
Navstar 76Medium Earth Orbit05 Feb, 2016
Navstar 75Medium Earth Orbit31 Oct, 2015
Navstar 74Medium Earth Orbit15 Jul, 2015
Navstar 73Medium Earth Orbit25 Mar, 2015
Navstar 72Medium Earth Orbit29 Oct, 2014
Navstar 71Medium Earth Orbit02 Aug, 2014

irnss

Satellite NameOrbit Date
NVS-01Geostationary Orbit (GEO)29 May, 2023
IRNSS-1IInclined Geosynchronous Orbit (IGSO)12 Apr, 2018
IRNSS-1HSub Geosynchronous Transfer Orbit (Sub-GTO)31 Aug, 2017
IRNSS-1GGeostationary Orbit (GEO)28 Apr, 2016
IRNSS-1FGeostationary Orbit (GEO)10 Mar, 2016
IRNSS-1EGeosynchronous Orbit (IGSO)20 Jan, 2016
IRNSS-1DInclined Geosynchronous Orbit (IGSO)28 Mar, 2015
IRNSS-1CGeostationary Orbit (GEO)16 Oct, 2014
IRNSS-1BInclined Geosynchronous Orbit (IGSO)04 Apr, 2014
IRNSS-1AInclined Geosynchronous Orbit (IGSO)01 Jul, 2013