ESA Launches RISE Mission to Pioneer In-Orbit Servicing and Sustainability in Space

ESA Launches RISE Mission to Pioneer In-Orbit Servicing and Sustainability in Space

ESA has taken another important step on the road towards sustainability in space with its first in-orbit servicing mission RISE. A €119 million contract was signed with D-Orbit as the co-funding prime contractor. RISE is a commercial in-orbit servicing mission that will demonstrate that it can safely rendezvous and dock to a geostationary client satellite. After verifying that it meets all the performance standards, D-Orbit will start commercial life extension services for geostationary satellites.

ESA’s RISE mission marks a promising step towards enhancing in-orbit services and technologies, such as refueling, refurbishment, and assembling – all essential elements for creating a circular economy in space.  

An essential part of ESA’s Space Safety program is dedicated to getting and keeping Earth’s orbits clean from space debris. In the long run, the Agency aspires to stimulate a truly circular economy in space, minimizing the impact of spaceflight on Earth and its resources where possible. As part of ESA’s Zero Debris approach, new ESA missions will be designed for safe operations and disposal to stop the creation of new debris by 2030. But why stop there?

“In-orbit servicing is the logical continuation of ESA’s sustainable approach to space. Extending the lifetime of satellites lets space operators generate more data and revenue from existing space assets, greatly improving both the sustainability and our competitiveness in space,” says Josef Aschbacher, ESA Director General.

An essential part of ESA’s Space Safety program is dedicated to getting and keeping Earth’s orbits clean from space debris. In the long run, the Agency aspires to stimulate a truly circular economy in space, minimizing the impact of spaceflight on Earth and its resources where possible. As part of ESA’s Zero Debris approach, new ESA missions will be designed for safe operations and disposal to stop the creation of new debris by 2030. But why stop there?

“In-orbit servicing is the logical continuation of ESA’s sustainable approach to space. Extending the lifetime of satellites lets space operators generate more data and revenue from existing space assets, greatly improving both the sustainability and our competitiveness in space,” says Josef Aschbacher, ESA Director General.

“It’s something we’d never do on Earth: to fuel our car, drive it until it runs empty, and then abandon it wherever it happens to be. And yet, that’s how much of spaceflight has worked so far. This is expensive as well as one of the root causes of space debris – which in turn also has a negative impact on the cost of future space exploration,” says Andrew Wolahan, RISE Project Manager at ESA. “Now that we can, we want to move away from single-use, disposable satellites and instead, as the technologies continue to develop, start extending satellites’ lifetime and service them right where they are, in orbit around Earth.”

While RISE docks and takes over the attitude and orbit control of its target, the client spacecraft will keep its power, communications with Earth, and payload fully functional. This opens the door to extending the lifetime of operational geostationary satellites that for some reason, such as running low on propellant or a partial failure, can’t control their position in orbit, but are otherwise capable of continuing their mission. In the future, not only life extension but refueling, assembling, refurbishing and recycling will all be regular activities in space. The required technologies are being developed across the world and many are quickly maturing.

RISE is expected to launch in 2028, kicking off an eventful 8-year mission in geostationary orbit. To start with, the satellite will transfer to a staging orbit just above regular geostationary orbit at an altitude of almost 36,000 km. After rigorous testing of its systems and in-orbit rehearsals, it will be time to start the demonstration phase of the mission, proving the satellite is up to the task. RISE will rise to the so-called geostationary graveyard, about 100 km higher, where satellites are ‘parked’ after they have reached the end of their mission. It would take many thousands of years for their orbits to naturally degrade and come low enough to interfere with the active satellites, keeping them safely disposed of and out of the way.

RISE will rendezvous with the active client satellite, matching its speed and trajectory in the graveyard orbit. Even though the operators of the client satellite will be expecting RISE, their satellite is ‘unprepared’ as it wasn't originally designed to be docked to another one. RISE will dock to the geostationary satellite by latching on to the ring that originally attached the satellite to its launcher. Once firmly in its grasp, RISE will change its attitude and orbit, showing it can precisely maneuver the client spacecraft.

Then, RISE will let go of the satellite again – an equally dangerous part of the process – and place itself in a parking orbit between the graveyard and geostationary orbit to wait, ready for its first commercial adventure once the evaluation is complete. Its first client might perhaps be a telecommunications satellite that's running low on fuel but can keep connecting people worldwide with a little help from RISE.

It takes a special kind of satellite to be able to take control of another. Geostationary satellites can be as big as a school bus and weigh more than 6000 kilograms. They often need to support heavy communications payloads that require large solar panels to power them. Geostationary satellites are also built extra sturdy to withstand the harsh radiation environment of geostationary orbit. While RISE is not as large as the satellites it will service, it still has the size of a minivan when tucked inside its launcher, weighing about 3000 kg at launch, of which about 800 kg will be propellant.  

The amount of cutting-edge technology aboard RISE is as big as the challenge of docking to a satellite in orbit and operations near another spacecraft. The RISE spacecraft will be packed with specialized state-of-the-art equipment to dock to a satellite, such as complex robotics systems, sensors to measure the distance to its target, and computers capable of autonomously controlling the satellite during docking. It will be the first time such an in-orbit servicing mission is built and operated by a European company, adding a competitive edge with the novel developments in robotic docking systems and the development of processes to rendezvous in space.

The future of in-orbit servicing missions in Europe is promising as they will revolutionize how we manage and maintain our space assets. These missions will not only extend the operational life of satellites but also play a crucial role in space debris mitigation, ensuring a safer and more efficient space environment for future generations.

“Extending a satellite’s life is a very challenging and exciting start to developing in-orbit servicing, for us and Europe. And it will be only the first step towards even more interesting services,” says Andrew. “In the future, we hope to see similar missions in different kinds of orbits that can perform increasingly more extensive services. Really, we want to do everything in space that you’d take your car to the garage or gas station for. We are excited to embark on this adventure together with D-Orbit.”

Click here to know more about ESA's RISE mission for Geostationary Satellites

Publisher: SatNow

GNSS Constellations - A list of all GNSS satellites by constellations

beidou

Satellite NameOrbit Date
BeiDou-3 G4Geostationary Orbit (GEO)17 May, 2023
BeiDou-3 G2Geostationary Orbit (GEO)09 Mar, 2020
Compass-IGSO7Inclined Geosynchronous Orbit (IGSO)09 Feb, 2020
BeiDou-3 M19Medium Earth Orbit (MEO)16 Dec, 2019
BeiDou-3 M20Medium Earth Orbit (MEO)16 Dec, 2019
BeiDou-3 M21Medium Earth Orbit (MEO)23 Nov, 2019
BeiDou-3 M22Medium Earth Orbit (MEO)23 Nov, 2019
BeiDou-3 I3Inclined Geosynchronous Orbit (IGSO)04 Nov, 2019
BeiDou-3 M23Medium Earth Orbit (MEO)22 Sep, 2019
BeiDou-3 M24Medium Earth Orbit (MEO)22 Sep, 2019

galileo

Satellite NameOrbit Date
GSAT0223MEO - Near-Circular05 Dec, 2021
GSAT0224MEO - Near-Circular05 Dec, 2021
GSAT0219MEO - Near-Circular25 Jul, 2018
GSAT0220MEO - Near-Circular25 Jul, 2018
GSAT0221MEO - Near-Circular25 Jul, 2018
GSAT0222MEO - Near-Circular25 Jul, 2018
GSAT0215MEO - Near-Circular12 Dec, 2017
GSAT0216MEO - Near-Circular12 Dec, 2017
GSAT0217MEO - Near-Circular12 Dec, 2017
GSAT0218MEO - Near-Circular12 Dec, 2017

glonass

Satellite NameOrbit Date
Kosmos 2569--07 Aug, 2023
Kosmos 2564--28 Nov, 2022
Kosmos 2559--10 Oct, 2022
Kosmos 2557--07 Jul, 2022
Kosmos 2547--25 Oct, 2020
Kosmos 2545--16 Mar, 2020
Kosmos 2544--11 Dec, 2019
Kosmos 2534--27 May, 2019
Kosmos 2529--03 Nov, 2018
Kosmos 2527--16 Jun, 2018

gps

Satellite NameOrbit Date
Navstar 82Medium Earth Orbit19 Jan, 2023
Navstar 81Medium Earth Orbit17 Jun, 2021
Navstar 78Medium Earth Orbit22 Aug, 2019
Navstar 77Medium Earth Orbit23 Dec, 2018
Navstar 76Medium Earth Orbit05 Feb, 2016
Navstar 75Medium Earth Orbit31 Oct, 2015
Navstar 74Medium Earth Orbit15 Jul, 2015
Navstar 73Medium Earth Orbit25 Mar, 2015
Navstar 72Medium Earth Orbit29 Oct, 2014
Navstar 71Medium Earth Orbit02 Aug, 2014

irnss

Satellite NameOrbit Date
NVS-01Geostationary Orbit (GEO)29 May, 2023
IRNSS-1IInclined Geosynchronous Orbit (IGSO)12 Apr, 2018
IRNSS-1HSub Geosynchronous Transfer Orbit (Sub-GTO)31 Aug, 2017
IRNSS-1GGeostationary Orbit (GEO)28 Apr, 2016
IRNSS-1FGeostationary Orbit (GEO)10 Mar, 2016
IRNSS-1EGeosynchronous Orbit (IGSO)20 Jan, 2016
IRNSS-1DInclined Geosynchronous Orbit (IGSO)28 Mar, 2015
IRNSS-1CGeostationary Orbit (GEO)16 Oct, 2014
IRNSS-1BInclined Geosynchronous Orbit (IGSO)04 Apr, 2014
IRNSS-1AInclined Geosynchronous Orbit (IGSO)01 Jul, 2013