Pasqal and Thales Achieve Milestone in Satellite Planning with Neutral-Atom Quantum Computing

Pasqal and Thales Achieve Milestone in Satellite Planning with Neutral-Atom Quantum Computing

Pasqal, a global leader in neutral atom quantum computing, in partnership with Thales, announced a major advancement within the AQUAPS project. This innovative project aimed to explore neutral atom architectures to solve optimization problems, with a particular focus on satellite planning.

For the past three years, the teams from Pasqal and Thales, supported by the Île-de-France region and GENCI, have been exploring new methods to optimize the planning and scheduling processes of critical systems using Pasqal’s quantum processor.

Planning (selection of policies and procedures suitable for carrying out a mission or project) and scheduling (converting project action plans into an operational timetable) are key steps in many critical applications at Thales: logistics, air traffic control, industrial automation, resource allocation, and disaster recovery assistance. These calculations are extremely complex and involve long processing times on classical computers.

Using a neutral-atom Quantum Processor Unit (QPU), the teams from Pasqal and Thales have worked closely to identify whether the performance allowed by the technology can scale up and solve problems of dimensions previously beyond the reach of classical computers.

Ultimately, Pasqal and Thales succeeded in solving a satellite planning problem on the QPU. This experiment indicated that neutral atom quantum computers are particularly well-suited for this task, as there is a natural correspondence between the satellite planning problem and the arrangement of atoms in the Quantum Processing Unit (QPU). This correspondence allows an efficient approach to solving optimization problems, thus offering new perspectives in the field of advanced satellite planning.

Georges-Olivier Reymond, CEO and Co-founder of Pasqal said, “We are extremely proud of the achievements of our collaboration with Thales, GENCI, and the Île-de-France region in the AQUAPS project. This partnership has demonstrated the power of quantum computing in solving real-world optimization problems, opening up new perspectives for the space industry and beyond.”

Frédéric Barbaresco, Quantum Algorithms & Computing Segment Leader at Thales, said, “This close collaboration, financed by the Île-de-France region quantum plan and with the support of GENCI, not only allows Thales to accelerate the maturation of a space use case described by Thales Alenia Space (France & Italy) in the Quantum Computing for Earth Observation (QC4EO) study of the European Space Agency (ESA), but also opens the prospect of other collaborations with Pasqal to study scaling up for effective operational implementation.”

Click here to learn about Pasqal's Aerospace and Defense solutions.

Publisher: SatNow
Tags:-  SatelliteLaunchGround

GNSS Constellations - A list of all GNSS satellites by constellations

beidou

Satellite NameOrbit Date
BeiDou-3 G4Geostationary Orbit (GEO)17 May, 2023
BeiDou-3 G2Geostationary Orbit (GEO)09 Mar, 2020
Compass-IGSO7Inclined Geosynchronous Orbit (IGSO)09 Feb, 2020
BeiDou-3 M19Medium Earth Orbit (MEO)16 Dec, 2019
BeiDou-3 M20Medium Earth Orbit (MEO)16 Dec, 2019
BeiDou-3 M21Medium Earth Orbit (MEO)23 Nov, 2019
BeiDou-3 M22Medium Earth Orbit (MEO)23 Nov, 2019
BeiDou-3 I3Inclined Geosynchronous Orbit (IGSO)04 Nov, 2019
BeiDou-3 M23Medium Earth Orbit (MEO)22 Sep, 2019
BeiDou-3 M24Medium Earth Orbit (MEO)22 Sep, 2019

galileo

Satellite NameOrbit Date
GSAT0223MEO - Near-Circular05 Dec, 2021
GSAT0224MEO - Near-Circular05 Dec, 2021
GSAT0219MEO - Near-Circular25 Jul, 2018
GSAT0220MEO - Near-Circular25 Jul, 2018
GSAT0221MEO - Near-Circular25 Jul, 2018
GSAT0222MEO - Near-Circular25 Jul, 2018
GSAT0215MEO - Near-Circular12 Dec, 2017
GSAT0216MEO - Near-Circular12 Dec, 2017
GSAT0217MEO - Near-Circular12 Dec, 2017
GSAT0218MEO - Near-Circular12 Dec, 2017

glonass

Satellite NameOrbit Date
Kosmos 2569--07 Aug, 2023
Kosmos 2564--28 Nov, 2022
Kosmos 2559--10 Oct, 2022
Kosmos 2557--07 Jul, 2022
Kosmos 2547--25 Oct, 2020
Kosmos 2545--16 Mar, 2020
Kosmos 2544--11 Dec, 2019
Kosmos 2534--27 May, 2019
Kosmos 2529--03 Nov, 2018
Kosmos 2527--16 Jun, 2018

gps

Satellite NameOrbit Date
Navstar 82Medium Earth Orbit19 Jan, 2023
Navstar 81Medium Earth Orbit17 Jun, 2021
Navstar 78Medium Earth Orbit22 Aug, 2019
Navstar 77Medium Earth Orbit23 Dec, 2018
Navstar 76Medium Earth Orbit05 Feb, 2016
Navstar 75Medium Earth Orbit31 Oct, 2015
Navstar 74Medium Earth Orbit15 Jul, 2015
Navstar 73Medium Earth Orbit25 Mar, 2015
Navstar 72Medium Earth Orbit29 Oct, 2014
Navstar 71Medium Earth Orbit02 Aug, 2014

irnss

Satellite NameOrbit Date
NVS-01Geostationary Orbit (GEO)29 May, 2023
IRNSS-1IInclined Geosynchronous Orbit (IGSO)12 Apr, 2018
IRNSS-1HSub Geosynchronous Transfer Orbit (Sub-GTO)31 Aug, 2017
IRNSS-1GGeostationary Orbit (GEO)28 Apr, 2016
IRNSS-1FGeostationary Orbit (GEO)10 Mar, 2016
IRNSS-1EGeosynchronous Orbit (IGSO)20 Jan, 2016
IRNSS-1DInclined Geosynchronous Orbit (IGSO)28 Mar, 2015
IRNSS-1CGeostationary Orbit (GEO)16 Oct, 2014
IRNSS-1BInclined Geosynchronous Orbit (IGSO)04 Apr, 2014
IRNSS-1AInclined Geosynchronous Orbit (IGSO)01 Jul, 2013