DARPA Selects Intel for Space-BACN Program to Accelerate Inter-Satellite Communications

DARPA Selects Intel for Space-BACN Program to Accelerate Inter-Satellite Communications

The U.S. Defense Advanced Research Projects Agency (DARPA) has selected Intel for Phase 1 of the Space-Based Adaptive Communications Node (Space-BACN) program, which aims to create a low-cost, reconfigurable optical communications terminal that will translate information between diverse satellite constellations. A Space-BACN satellite terminal will enable communications between satellite constellations, enabling data to be sent anywhere around the planet at the speed of light.

DARPA is planning for a future where tens of thousands of satellites from multiple private sector organizations deliver broadband services from low earth orbit (LEO). The goal of Space-BACN is to create an “internet” of satellites, enabling seamless communication between military/government and commercial/civil satellite constellations.

The program will facilitate collaboration among partners to ensure that the terminal being designed is reconfigurable to provide interoperability among the participating constellation providers.

How It Works

There are three technical areas in the program.

Technical Area 1 (TA1) focuses on the development of an optical aperture or “head,” which is responsible for pointing acquisition and tracking, as well as the optical, transmit and receive functions. DARPA has selected the following organizations for this technical area: CACI Inc., MBRYONICS, and Mynaric.

DARPA selected Intel for Technical Area 2 (TA2) along with II-VI Aerospace and Defense and Arizona State University to design a reconfigurable optical modem that will support both current and new communication standards and protocols to enable interoperability among satellite constellations.

TA1 will interface to TA2 using single-mode optical fiber.

In Technical Area 3 (TA3), DARPA selected constellation providers – Space Exploration Technologies (SpaceX), Telesat, SpaceLink, Viasat, and Kuiper Government Solutions (KGS) LLC (an Amazon subsidiary) – to identify critical command and control elements required to support cross-constellation optical inter-satellite link communications and develop the schema necessary to interface between Space-BACN and commercial partner constellations.

Intel’s BACN Solution

Intel is developing its optical modem solution by bringing together experts from its field programmable gate array (FPGA) product group, packaging technologists from its Assembly Test Technology Development (ATTD) division, and researchers from Intel Labs.

Based on its leading-edge low-power Intel Agilex FPGA, Intel will also design three new chiplets that will be integrated using Intel’s embedded multi-die interconnect bridge (EMIB) and advanced interface bus (AIB) packaging technologies into a single multi-chip package (MCP) that includes:

  • A DSP/FEC chiplet on Intel 3, the most advanced digital node, that enables low-power, high-speed digital signal processing.
  • A data converter/TIA/driver chiplet on Intel 16, which provides the best-in-class FinFET RF signal processing for the integration of high-speed data converters, TIAs, and drivers.
  • A PIC chiplet based on Tower Semiconductor photonic technologies that offer low-loss waveguides and options, such as V-groove, enabling automated high-volume fiber coupling integration and assembly.

Status of the SPACE-BACN Program

Intel has commenced Phase 1 of the program where it will design each of the above chiplets and work with the other performers to fully define the interfaces between the system components in each of the other technical areas. Phase 1 will last 14 months and conclude with a preliminary design review.

At the completion of Phase 1, selected performers in the first two technical areas will participate in an 18-month Phase 2 to develop engineering design units of the optical terminal components, while performers in the third technical area will continue to evolve the schema to function in more challenging and dynamic scenarios.

Click here to learn about Intel Agilex FPGA and SoC FPGA.


Publisher: SatNow
Tags:-  SatelliteLEOGlobal

GNSS Constellations - A list of all GNSS satellites by constellations

beidou

Satellite NameOrbit Date
BeiDou-3 G4Geostationary Orbit (GEO)17 May, 2023
BeiDou-3 G2Geostationary Orbit (GEO)09 Mar, 2020
Compass-IGSO7Inclined Geosynchronous Orbit (IGSO)09 Feb, 2020
BeiDou-3 M19Medium Earth Orbit (MEO)16 Dec, 2019
BeiDou-3 M20Medium Earth Orbit (MEO)16 Dec, 2019
BeiDou-3 M21Medium Earth Orbit (MEO)23 Nov, 2019
BeiDou-3 M22Medium Earth Orbit (MEO)23 Nov, 2019
BeiDou-3 I3Inclined Geosynchronous Orbit (IGSO)04 Nov, 2019
BeiDou-3 M23Medium Earth Orbit (MEO)22 Sep, 2019
BeiDou-3 M24Medium Earth Orbit (MEO)22 Sep, 2019

galileo

Satellite NameOrbit Date
GSAT0223MEO - Near-Circular05 Dec, 2021
GSAT0224MEO - Near-Circular05 Dec, 2021
GSAT0219MEO - Near-Circular25 Jul, 2018
GSAT0220MEO - Near-Circular25 Jul, 2018
GSAT0221MEO - Near-Circular25 Jul, 2018
GSAT0222MEO - Near-Circular25 Jul, 2018
GSAT0215MEO - Near-Circular12 Dec, 2017
GSAT0216MEO - Near-Circular12 Dec, 2017
GSAT0217MEO - Near-Circular12 Dec, 2017
GSAT0218MEO - Near-Circular12 Dec, 2017

glonass

Satellite NameOrbit Date
Kosmos 2569--07 Aug, 2023
Kosmos 2564--28 Nov, 2022
Kosmos 2559--10 Oct, 2022
Kosmos 2557--07 Jul, 2022
Kosmos 2547--25 Oct, 2020
Kosmos 2545--16 Mar, 2020
Kosmos 2544--11 Dec, 2019
Kosmos 2534--27 May, 2019
Kosmos 2529--03 Nov, 2018
Kosmos 2527--16 Jun, 2018

gps

Satellite NameOrbit Date
Navstar 82Medium Earth Orbit19 Jan, 2023
Navstar 81Medium Earth Orbit17 Jun, 2021
Navstar 78Medium Earth Orbit22 Aug, 2019
Navstar 77Medium Earth Orbit23 Dec, 2018
Navstar 76Medium Earth Orbit05 Feb, 2016
Navstar 75Medium Earth Orbit31 Oct, 2015
Navstar 74Medium Earth Orbit15 Jul, 2015
Navstar 73Medium Earth Orbit25 Mar, 2015
Navstar 72Medium Earth Orbit29 Oct, 2014
Navstar 71Medium Earth Orbit02 Aug, 2014

irnss

Satellite NameOrbit Date
NVS-01Geostationary Orbit (GEO)29 May, 2023
IRNSS-1IInclined Geosynchronous Orbit (IGSO)12 Apr, 2018
IRNSS-1HSub Geosynchronous Transfer Orbit (Sub-GTO)31 Aug, 2017
IRNSS-1GGeostationary Orbit (GEO)28 Apr, 2016
IRNSS-1FGeostationary Orbit (GEO)10 Mar, 2016
IRNSS-1EGeosynchronous Orbit (IGSO)20 Jan, 2016
IRNSS-1DInclined Geosynchronous Orbit (IGSO)28 Mar, 2015
IRNSS-1CGeostationary Orbit (GEO)16 Oct, 2014
IRNSS-1BInclined Geosynchronous Orbit (IGSO)04 Apr, 2014
IRNSS-1AInclined Geosynchronous Orbit (IGSO)01 Jul, 2013