DARPA Launches New SPCE Program to Improve Power Efficiency in Harsh Space Environments

DARPA Launches New SPCE Program to Improve Power Efficiency in Harsh Space Environments

Rapidly proliferating small satellites in low Earth orbit (LEO) are expanding space-based capabilities critical to both government and industry. As the subsequent, ever-increasing demand strains the operational limitations of LEO satellites, DARPA’s new Space Power Conversion Electronics (SPCE) program seeks greater efficiencies in usable power in the harsh space environment.

Space-based power consumption generates heat that can only be offloaded through radiation. This type of thermal management constrains the maximum operating power a satellite can consume. Usable power is further reduced by the inefficiencies in point-of-load (POL) converters. The main function of POL converters is to deliver power at a significantly lower voltage than the high-voltage main satellite power bus for payloads. These lower-voltage applications include onboard microsystems that execute computing and other electronic functions.

Today’s space POL converters comprise radiation-hardened, high-voltage switching transistors and radiation-resistant passive and active circuit elements to survive in challenging space conditions. These components, subject to extensive development and testing processes to withstand radiation damage, trail the performance of their counterparts built for non-radiated applications, such as ground-based systems. The latter can leverage faster, more cutting-edge components, but the radiation-hardening process reduces POL power efficiency in space to as little as 60%  severely limiting a satellite’s capabilities and battery lifetime.

Improved power efficiency in the harsh, radiated space environment is necessary to meet demands for new, increasingly advanced mission capabilities as well as extended lifetimes for persistent LEO constellations. The goal of DARPA’s SPCE program is to boost the performance of space-based POL systems through the development of high-voltage, radiation-tolerant transistors and integrated circuit technologies that are low-loss, high-voltage, and radiation tolerant.

“SPCE will exploit a combination of materials and device engineering, integrating advanced materials of different types and composition – or heterogeneous material synthesis – and novel device designs. This will help achieve radiation-tolerant power transistors for space that offer performance that is competitive with terrestrial, state-of-the-art wide bandgap semiconductor power transistors,” said Jason Woo, DARPA program manager for SPCE. “With proliferation in LEO, 60% efficiency is no longer good enough.”

According to Woo, if successful, SPCE breakthroughs could extend system lifetimes and create new mission capabilities for persistent LEO constellations operating in difficult space terrains.

The SPCE program consists of three program phases. The 20-month first phase will target radiation-tolerant, high-performance, high-voltage transistors development, while Phase 2 focuses on low-loss integration development, and Phase 3 targets high-efficiency conversion circuit demonstration.

Click here to learn about DARPA's research programs.

Publisher: SatNow
Tags:-  SatelliteLEOPower Systems

GNSS Constellations - A list of all GNSS satellites by constellations

beidou

Satellite NameOrbit Date
BeiDou-3 G4Geostationary Orbit (GEO)17 May, 2023
BeiDou-3 G2Geostationary Orbit (GEO)09 Mar, 2020
Compass-IGSO7Inclined Geosynchronous Orbit (IGSO)09 Feb, 2020
BeiDou-3 M19Medium Earth Orbit (MEO)16 Dec, 2019
BeiDou-3 M20Medium Earth Orbit (MEO)16 Dec, 2019
BeiDou-3 M21Medium Earth Orbit (MEO)23 Nov, 2019
BeiDou-3 M22Medium Earth Orbit (MEO)23 Nov, 2019
BeiDou-3 I3Inclined Geosynchronous Orbit (IGSO)04 Nov, 2019
BeiDou-3 M23Medium Earth Orbit (MEO)22 Sep, 2019
BeiDou-3 M24Medium Earth Orbit (MEO)22 Sep, 2019

galileo

Satellite NameOrbit Date
GSAT0223MEO - Near-Circular05 Dec, 2021
GSAT0224MEO - Near-Circular05 Dec, 2021
GSAT0219MEO - Near-Circular25 Jul, 2018
GSAT0220MEO - Near-Circular25 Jul, 2018
GSAT0221MEO - Near-Circular25 Jul, 2018
GSAT0222MEO - Near-Circular25 Jul, 2018
GSAT0215MEO - Near-Circular12 Dec, 2017
GSAT0216MEO - Near-Circular12 Dec, 2017
GSAT0217MEO - Near-Circular12 Dec, 2017
GSAT0218MEO - Near-Circular12 Dec, 2017

glonass

Satellite NameOrbit Date
Kosmos 2569--07 Aug, 2023
Kosmos 2564--28 Nov, 2022
Kosmos 2559--10 Oct, 2022
Kosmos 2557--07 Jul, 2022
Kosmos 2547--25 Oct, 2020
Kosmos 2545--16 Mar, 2020
Kosmos 2544--11 Dec, 2019
Kosmos 2534--27 May, 2019
Kosmos 2529--03 Nov, 2018
Kosmos 2527--16 Jun, 2018

gps

Satellite NameOrbit Date
Navstar 82Medium Earth Orbit19 Jan, 2023
Navstar 81Medium Earth Orbit17 Jun, 2021
Navstar 78Medium Earth Orbit22 Aug, 2019
Navstar 77Medium Earth Orbit23 Dec, 2018
Navstar 76Medium Earth Orbit05 Feb, 2016
Navstar 75Medium Earth Orbit31 Oct, 2015
Navstar 74Medium Earth Orbit15 Jul, 2015
Navstar 73Medium Earth Orbit25 Mar, 2015
Navstar 72Medium Earth Orbit29 Oct, 2014
Navstar 71Medium Earth Orbit02 Aug, 2014

irnss

Satellite NameOrbit Date
NVS-01Geostationary Orbit (GEO)29 May, 2023
IRNSS-1IInclined Geosynchronous Orbit (IGSO)12 Apr, 2018
IRNSS-1HSub Geosynchronous Transfer Orbit (Sub-GTO)31 Aug, 2017
IRNSS-1GGeostationary Orbit (GEO)28 Apr, 2016
IRNSS-1FGeostationary Orbit (GEO)10 Mar, 2016
IRNSS-1EGeosynchronous Orbit (IGSO)20 Jan, 2016
IRNSS-1DInclined Geosynchronous Orbit (IGSO)28 Mar, 2015
IRNSS-1CGeostationary Orbit (GEO)16 Oct, 2014
IRNSS-1BInclined Geosynchronous Orbit (IGSO)04 Apr, 2014
IRNSS-1AInclined Geosynchronous Orbit (IGSO)01 Jul, 2013