Merida Aerospace Developing Perovskite Solar Cells for Low Earth Orbit Satellites

Merida Aerospace Developing Perovskite Solar Cells for Low Earth Orbit Satellites

Merida Aerospace, a Tampa-based aerospace company, is developing perovskite solar cells tailored for space applications, with a specific emphasis on enhancing performance and economy for low Earth orbit (LEO) satellites.

LEO satellites often rely on solar panels as their primary power source, capturing sunlight during orbital solar exposure for sustained operation. These panels enhance weight efficiency by reducing the need for an excessive number of batteries, enabling autonomous function during intermittent access to sunlight while in low earth orbit.

Gallium arsenide solar panels, with efficiencies of around 30%, have been the go-to for solar cells in the space solar energy field. Gallium arsenide material exhibits unique semiconductor properties, making it ideal for space applications. However, despite their performance, gallium arsenide solar panels face challenges due to higher manufacturing costs, primarily stemming from the scarcity of gallium and their complex manufacturing process. These cost constraints have prompted researchers and industry experts to explore alternative materials and manufacturing processes to make high-efficiency solar cells more economically viable.

That's where Perovskite solar cells emerge as a promising alternative, offering distinct advantages over gallium arsenide. Perovskite cells present cost-effectiveness through simplified and economical manufacturing processes. Their flexibility and versatility make the material suitable for diverse applications, from lightweight to bendable solar panels. While gallium arsenide has been synonymous with high efficiency, ongoing research indicates that perovskite cells are rapidly closing the efficiency gap, displaying potential comparable or even higher efficiency levels.

Merida Aerospace, a comprehensive vertical space company, takes pride in manufacturing all components integral to space exploration. From rocket launch motors to satellite components and ground communication systems, Merida Aerospace stands as a one-stop-shop for everything related to space, captured by its motto: "Space of Things - Everything space under one roof."

Currently, Merida Aerospace's research engineer, Andrea Marquez is overseeing the developmental project. Andrea states that "Perovskite solar cells have demonstrated remarkable resilience to high-energy radiation in space conditions, thanks to a self-healing effect. Furthermore, the arrangement of perovskite crystals is influenced by space temperatures, enhancing their light absorption capabilities."

Perovskite solar cells may signify a groundbreaking advancement, due to their efficiency potential and unique optical properties. Their crystalline structure allows optimal light absorption, rivaling or exceeding traditional silicon-based solar cells. Perovskite's ease of processing through cost-effective methods makes it attractive for lightweight, flexible, and adaptable solar panels. Perovskite technology holds the potential to revolutionize the solar energy landscape.

Recently Dr. Lyndsey McMillon-Brown, a NASA research engineer, celebrated the success of a spaceflight demonstration testing perovskite durability on the International Space Station. After a 10-month exposure, the perovskite film displayed resilience and unexpected restorative properties. This opens exciting possibilities for perovskite in space exploration, challenging previous doubts.

Perovskite solar panels are increasingly being viewed as the potential future of solar cells in fact many professionals in the field see perovskite technology as a possible game-changer due to its combination of high efficiency, versatility in manufacturing, and potential for cost-effectiveness.

Furthermore, the enhanced efficiency and adaptability of perovskite solar cells position them as a competitive player in the race for more effective renewable energy sources. Perovskite technology may become a mainstream choice for powering residential, commercial, and industrial applications. This shift could redefine the solar industry landscape, moving towards a future where perovskite solar cells play a vital role in meeting the world's growing energy demands sustainably.

Perovskite solar cells offer environmental benefits, contributing to a sustainable and eco-friendly approach. Their components are abundant and involve a less energy-intensive manufacturing process, aligning with global shifts toward cleaner and sustainable energy technologies.

Click here to learn about Merida Aerospace's Satellite Solutions.

Publisher: SatNow

GNSS Constellations - A list of all GNSS satellites by constellations

beidou

Satellite NameOrbit Date
BeiDou-3 G4Geostationary Orbit (GEO)17 May, 2023
BeiDou-3 G2Geostationary Orbit (GEO)09 Mar, 2020
Compass-IGSO7Inclined Geosynchronous Orbit (IGSO)09 Feb, 2020
BeiDou-3 M19Medium Earth Orbit (MEO)16 Dec, 2019
BeiDou-3 M20Medium Earth Orbit (MEO)16 Dec, 2019
BeiDou-3 M21Medium Earth Orbit (MEO)23 Nov, 2019
BeiDou-3 M22Medium Earth Orbit (MEO)23 Nov, 2019
BeiDou-3 I3Inclined Geosynchronous Orbit (IGSO)04 Nov, 2019
BeiDou-3 M23Medium Earth Orbit (MEO)22 Sep, 2019
BeiDou-3 M24Medium Earth Orbit (MEO)22 Sep, 2019

galileo

Satellite NameOrbit Date
GSAT0223MEO - Near-Circular05 Dec, 2021
GSAT0224MEO - Near-Circular05 Dec, 2021
GSAT0219MEO - Near-Circular25 Jul, 2018
GSAT0220MEO - Near-Circular25 Jul, 2018
GSAT0221MEO - Near-Circular25 Jul, 2018
GSAT0222MEO - Near-Circular25 Jul, 2018
GSAT0215MEO - Near-Circular12 Dec, 2017
GSAT0216MEO - Near-Circular12 Dec, 2017
GSAT0217MEO - Near-Circular12 Dec, 2017
GSAT0218MEO - Near-Circular12 Dec, 2017

glonass

Satellite NameOrbit Date
Kosmos 2569--07 Aug, 2023
Kosmos 2564--28 Nov, 2022
Kosmos 2559--10 Oct, 2022
Kosmos 2557--07 Jul, 2022
Kosmos 2547--25 Oct, 2020
Kosmos 2545--16 Mar, 2020
Kosmos 2544--11 Dec, 2019
Kosmos 2534--27 May, 2019
Kosmos 2529--03 Nov, 2018
Kosmos 2527--16 Jun, 2018

gps

Satellite NameOrbit Date
Navstar 82Medium Earth Orbit19 Jan, 2023
Navstar 81Medium Earth Orbit17 Jun, 2021
Navstar 78Medium Earth Orbit22 Aug, 2019
Navstar 77Medium Earth Orbit23 Dec, 2018
Navstar 76Medium Earth Orbit05 Feb, 2016
Navstar 75Medium Earth Orbit31 Oct, 2015
Navstar 74Medium Earth Orbit15 Jul, 2015
Navstar 73Medium Earth Orbit25 Mar, 2015
Navstar 72Medium Earth Orbit29 Oct, 2014
Navstar 71Medium Earth Orbit02 Aug, 2014

irnss

Satellite NameOrbit Date
NVS-01Geostationary Orbit (GEO)29 May, 2023
IRNSS-1IInclined Geosynchronous Orbit (IGSO)12 Apr, 2018
IRNSS-1HSub Geosynchronous Transfer Orbit (Sub-GTO)31 Aug, 2017
IRNSS-1GGeostationary Orbit (GEO)28 Apr, 2016
IRNSS-1FGeostationary Orbit (GEO)10 Mar, 2016
IRNSS-1EGeosynchronous Orbit (IGSO)20 Jan, 2016
IRNSS-1DInclined Geosynchronous Orbit (IGSO)28 Mar, 2015
IRNSS-1CGeostationary Orbit (GEO)16 Oct, 2014
IRNSS-1BInclined Geosynchronous Orbit (IGSO)04 Apr, 2014
IRNSS-1AInclined Geosynchronous Orbit (IGSO)01 Jul, 2013