NASA Announces 2024 Phase I Awardees for Innovative Concept Studies

NASA Announces 2024 Phase I Awardees for Innovative Concept Studies

NASA selected the 2024 Phase I awardees for its program to fund ideas that could  innovate for the benefit of all and transform future agency missions. From proposals to explore low Earth orbit to the stars, the 13 concepts chosen stem from companies and institutions across the United States.

The NIAC (NASA Innovative Advanced Concepts) program fosters pioneering ideas by funding early-stage technology concept studies for future consideration and potential commercialization. The combined award is a maximum of $175,000 in grants to evaluate technologies that could enable tomorrow’s space missions.

The daring missions NASA undertakes for the benefit of humanity all begin as just an idea, and NIAC is responsible for inspiring many of those ideas,” said NASA Associate Administrator Jim Free. “The Ingenuity helicopter flying on Mars and instruments on the MarCO deep space CubeSats can trace their lineage back to NIAC, proving there is a path from creative idea to mission success. And, while not all these concepts will fly, NASA and our partners worldwide can learn from fresh approaches and may eventually use technologies advanced by NIAC.

This year’s class will explore sample return from the surface of Venus, fixed-wing flight on Mars, a swarm of probes traveling across interstellar space, and more. All NIAC studies are in the early stages of conceptual development and are not considered official NASA missions

Ge-Cheng Zha, Coflow Jet LLC in Florida, proposed flying the first fixed-wing, electric vertical takeoff, and landing craft on Mars. The vehicle nicknamed “MAGGIE,” could extend humanity’s ability to explore and conduct science on the Red Planet. 

Thomas Eubanks, Space Initiatives Inc. in Florida, believes a swarm of tiny spacecraft could travel to Proxima Centauri this century, sending back data about the Sun’s nearest interstellar neighbor using a novel laser sailcraft and laser communications.

Geoff Landis, NASA’s Glenn Research Center in Cleveland, proposed a spacecraft that can not only survive Venus’ harsh environment but return a sample from the surface using innovations in high-temperature technology and solar aircraft. 

“The diversity of this year’s Phase I projects – from quantum sensors observing Earth’s atmosphere to a coordinated swarm of spacecraft communicating from the next star – is a testament to the truly innovative community reached by NIAC,” said Mike LaPointe, NIAC program executive at NASA Headquarters in Washington. “The NIAC awards highlight NASA’s commitment to continue pushing the boundaries of what’s possible.”

Using their NIAC grants, the researchers, known as fellows, will investigate the fundamental premise of their concepts, roadmap necessary technology development, identify potential challenges, and look for opportunities to bring these concepts to life.

In addition to the projects mentioned above, the other selectees to receive 2024 NIAC Phase I grants are:

NASA’s Space Technology Mission Directorate funds the NIAC program, as it is responsible for developing the agency’s new cross-cutting technologies and capabilities to achieve its current and future missions.

Click here to learn more about NASA's NIAC Program.

Publisher: SatNow
Tags:-  SatelliteLaunchSensorsGround

GNSS Constellations - A list of all GNSS satellites by constellations

beidou

Satellite NameOrbit Date
BeiDou-3 G4Geostationary Orbit (GEO)17 May, 2023
BeiDou-3 G2Geostationary Orbit (GEO)09 Mar, 2020
Compass-IGSO7Inclined Geosynchronous Orbit (IGSO)09 Feb, 2020
BeiDou-3 M19Medium Earth Orbit (MEO)16 Dec, 2019
BeiDou-3 M20Medium Earth Orbit (MEO)16 Dec, 2019
BeiDou-3 M21Medium Earth Orbit (MEO)23 Nov, 2019
BeiDou-3 M22Medium Earth Orbit (MEO)23 Nov, 2019
BeiDou-3 I3Inclined Geosynchronous Orbit (IGSO)04 Nov, 2019
BeiDou-3 M23Medium Earth Orbit (MEO)22 Sep, 2019
BeiDou-3 M24Medium Earth Orbit (MEO)22 Sep, 2019

galileo

Satellite NameOrbit Date
GSAT0223MEO - Near-Circular05 Dec, 2021
GSAT0224MEO - Near-Circular05 Dec, 2021
GSAT0219MEO - Near-Circular25 Jul, 2018
GSAT0220MEO - Near-Circular25 Jul, 2018
GSAT0221MEO - Near-Circular25 Jul, 2018
GSAT0222MEO - Near-Circular25 Jul, 2018
GSAT0215MEO - Near-Circular12 Dec, 2017
GSAT0216MEO - Near-Circular12 Dec, 2017
GSAT0217MEO - Near-Circular12 Dec, 2017
GSAT0218MEO - Near-Circular12 Dec, 2017

glonass

Satellite NameOrbit Date
Kosmos 2569--07 Aug, 2023
Kosmos 2564--28 Nov, 2022
Kosmos 2559--10 Oct, 2022
Kosmos 2557--07 Jul, 2022
Kosmos 2547--25 Oct, 2020
Kosmos 2545--16 Mar, 2020
Kosmos 2544--11 Dec, 2019
Kosmos 2534--27 May, 2019
Kosmos 2529--03 Nov, 2018
Kosmos 2527--16 Jun, 2018

gps

Satellite NameOrbit Date
Navstar 82Medium Earth Orbit19 Jan, 2023
Navstar 81Medium Earth Orbit17 Jun, 2021
Navstar 78Medium Earth Orbit22 Aug, 2019
Navstar 77Medium Earth Orbit23 Dec, 2018
Navstar 76Medium Earth Orbit05 Feb, 2016
Navstar 75Medium Earth Orbit31 Oct, 2015
Navstar 74Medium Earth Orbit15 Jul, 2015
Navstar 73Medium Earth Orbit25 Mar, 2015
Navstar 72Medium Earth Orbit29 Oct, 2014
Navstar 71Medium Earth Orbit02 Aug, 2014

irnss

Satellite NameOrbit Date
NVS-01Geostationary Orbit (GEO)29 May, 2023
IRNSS-1IInclined Geosynchronous Orbit (IGSO)12 Apr, 2018
IRNSS-1HSub Geosynchronous Transfer Orbit (Sub-GTO)31 Aug, 2017
IRNSS-1GGeostationary Orbit (GEO)28 Apr, 2016
IRNSS-1FGeostationary Orbit (GEO)10 Mar, 2016
IRNSS-1EGeosynchronous Orbit (IGSO)20 Jan, 2016
IRNSS-1DInclined Geosynchronous Orbit (IGSO)28 Mar, 2015
IRNSS-1CGeostationary Orbit (GEO)16 Oct, 2014
IRNSS-1BInclined Geosynchronous Orbit (IGSO)04 Apr, 2014
IRNSS-1AInclined Geosynchronous Orbit (IGSO)01 Jul, 2013