Amazon's Project Kuiper Successfully Concludes Testing of Optical Mesh Network in LEO

Amazon's Project Kuiper Successfully Concludes Testing of Optical Mesh Network in LEO

Since the successful launch and deployment of two prototype satellites in October 2023, Project Kuiper has been conducting extensive testing of its end-to-end communications payload and network. In November, we confirmed we had validated all priority systems and subsystems within 30 days of launch, and we shared a first look at demos over the Kuiper network. One critical system that was part of that testing—but has remained confidential until now—was our optical inter-satellite link (OISL) capabilities.

Our prototype satellites, KuiperSat-1 and KuiperSat-2, include advanced optical communications payloads. We have completed multiple successful demonstrations of that next-generation technology, maintaining 100 gigabits per second (Gbps) links over a distance of nearly 621 miles (1,000 kilometers) for the entire test window. These tests validated the final component of Project Kuiper’s advanced communications architecture, and the results ensure that OISLs will be operational on our first production satellites, slated for launch in the first half of 2024.

“With optical inter-satellite links across our satellite constellation, Project Kuiper will effectively operate as a mesh network in space,” said Rajeev Badyal, Project Kuiper's vice president of technology. “This system is designed fully in-house to optimize for speed, cost, and reliability, and the entire architecture has worked flawlessly from the very start. These immediate results are only possible because we approached our OISL architecture as one part of a fully integrated system design, and it’s a testament to this team’s willingness to invent on behalf of customers. We’re excited to be able to support these next-generation OISL capabilities on every Kuiper satellite from day one.”

Operating a next-generation orbital laser mesh network

OISLs use infrared lasers to send data between spacecraft as they orbit the planet. Instead of being limited to sending data between an individual satellite and antennas on the ground, OISLs allow satellites to send data directly to other satellites in a constellation. We are equipping every Project Kuiper satellite with multiple optical terminals to connect many satellites at a time, establishing high-speed laser cross-links that form a secure, resilient mesh network in space. These capabilities increase throughput and reduce latency across our constellation, and provide more flexibility to connect Kuiper customers across land, sea, air, and space.

Another benefit of OISLs is the speed at which you can move data around the world. Light travels faster in space than it does through glass, which means that Kuiper’s orbital laser mesh network can move data approximately 30% faster than if it traveled the equivalent distance via terrestrial fiber optic cables. And because Project Kuiper leverages AWS service and infrastructure to route data traffic, we can reduce latency even further across our network.

Advancing the state of the art in OISL technology

OISLs represent a long-standing challenge for low Earth orbit (LEO) satellite broadband connectivity. To establish and maintain laser links, you need to minimize the spread of light to ensure a strong signal; you need to establish contact across distances of up to 1,616 miles (2,600 km); you need to maintain that connection between spacecraft moving at speeds of up to 15,534 miles per hour (25,000 km per hour); and you need to accomplish all of that while compensating for satellite and flight dynamics. Project Kuiper designed a state-of-the-art optics and control system capable of addressing these challenges.

Although this system performed well during extensive testing in a lab environment, our Protoflight mission provided an opportunity to test the end-to-end architecture in space. In early November, we established the first successful optical links between our two prototype satellites, allowing us to send and receive data at speeds of up to 100 Gbps for entire test windows of an hour or more. These tests demonstrated our ability to establish a single bi-directional link between two satellites, and initial data indicates that our design will be able to maintain cross-links between multiple satellites at once—the critical feature of a next-generation mesh network in space.

Delivering resilient, secure connectivity for enterprise and public sector customers

Amazon’s OISL capabilities will allow Project Kuiper to move and land data anywhere via its mesh network in space, bringing secure, resilient connectivity to a wide range of enterprise and public sector customers. This is especially important for those operating in regions without a nearby ground station—for example, a cruise liner in the middle of the ocean or an aircraft making a transatlantic flight—allowing them to securely uplink data from effectively any location on Earth, transmit it through space via laser communications, and downlink it to their destination of choice.

“Amazon’s optical mesh network will provide multiple paths to route data through space, creating resiliency and redundancy for customers who need to securely transport information around the world,” said Ricky Freeman, vice president of Kuiper Government Solutions, a dedicated division within Project Kuiper focused on serving public sector customers. “This is especially important for those looking to avoid communications architectures that can be intercepted or jammed, and we look to forward to making these capabilities available to public sector customers looking to move and land data from remote locations to their desired destination.”

Project Kuiper is already supporting public sector research and development in optical communications technology, and we look forward to bringing our advanced communications capabilities to additional enterprise and government customers as we begin to deploy our OISL-equipped production satellites.

Project Kuiper is beginning satellite manufacturing ahead of a full-scale deployment that starts in the first half of 2024, and we expect to have enough satellites deployed to begin early customer pilots in the second half of 2024.

Click here to learn more about Project Kuiper Satellite Broadband Network. 


Publisher: SatNow
Tags:-  SatelliteLEOGround

GNSS Constellations - A list of all GNSS satellites by constellations

beidou

Satellite NameOrbit Date
BeiDou-3 G4Geostationary Orbit (GEO)17 May, 2023
BeiDou-3 G2Geostationary Orbit (GEO)09 Mar, 2020
Compass-IGSO7Inclined Geosynchronous Orbit (IGSO)09 Feb, 2020
BeiDou-3 M19Medium Earth Orbit (MEO)16 Dec, 2019
BeiDou-3 M20Medium Earth Orbit (MEO)16 Dec, 2019
BeiDou-3 M21Medium Earth Orbit (MEO)23 Nov, 2019
BeiDou-3 M22Medium Earth Orbit (MEO)23 Nov, 2019
BeiDou-3 I3Inclined Geosynchronous Orbit (IGSO)04 Nov, 2019
BeiDou-3 M23Medium Earth Orbit (MEO)22 Sep, 2019
BeiDou-3 M24Medium Earth Orbit (MEO)22 Sep, 2019

galileo

Satellite NameOrbit Date
GSAT0223MEO - Near-Circular05 Dec, 2021
GSAT0224MEO - Near-Circular05 Dec, 2021
GSAT0219MEO - Near-Circular25 Jul, 2018
GSAT0220MEO - Near-Circular25 Jul, 2018
GSAT0221MEO - Near-Circular25 Jul, 2018
GSAT0222MEO - Near-Circular25 Jul, 2018
GSAT0215MEO - Near-Circular12 Dec, 2017
GSAT0216MEO - Near-Circular12 Dec, 2017
GSAT0217MEO - Near-Circular12 Dec, 2017
GSAT0218MEO - Near-Circular12 Dec, 2017

glonass

Satellite NameOrbit Date
Kosmos 2569--07 Aug, 2023
Kosmos 2564--28 Nov, 2022
Kosmos 2559--10 Oct, 2022
Kosmos 2557--07 Jul, 2022
Kosmos 2547--25 Oct, 2020
Kosmos 2545--16 Mar, 2020
Kosmos 2544--11 Dec, 2019
Kosmos 2534--27 May, 2019
Kosmos 2529--03 Nov, 2018
Kosmos 2527--16 Jun, 2018

gps

Satellite NameOrbit Date
Navstar 82Medium Earth Orbit19 Jan, 2023
Navstar 81Medium Earth Orbit17 Jun, 2021
Navstar 78Medium Earth Orbit22 Aug, 2019
Navstar 77Medium Earth Orbit23 Dec, 2018
Navstar 76Medium Earth Orbit05 Feb, 2016
Navstar 75Medium Earth Orbit31 Oct, 2015
Navstar 74Medium Earth Orbit15 Jul, 2015
Navstar 73Medium Earth Orbit25 Mar, 2015
Navstar 72Medium Earth Orbit29 Oct, 2014
Navstar 71Medium Earth Orbit02 Aug, 2014

irnss

Satellite NameOrbit Date
NVS-01Geostationary Orbit (GEO)29 May, 2023
IRNSS-1IInclined Geosynchronous Orbit (IGSO)12 Apr, 2018
IRNSS-1HSub Geosynchronous Transfer Orbit (Sub-GTO)31 Aug, 2017
IRNSS-1GGeostationary Orbit (GEO)28 Apr, 2016
IRNSS-1FGeostationary Orbit (GEO)10 Mar, 2016
IRNSS-1EGeosynchronous Orbit (IGSO)20 Jan, 2016
IRNSS-1DInclined Geosynchronous Orbit (IGSO)28 Mar, 2015
IRNSS-1CGeostationary Orbit (GEO)16 Oct, 2014
IRNSS-1BInclined Geosynchronous Orbit (IGSO)04 Apr, 2014
IRNSS-1AInclined Geosynchronous Orbit (IGSO)01 Jul, 2013