ICON Selected by DARPA for LunA-10 Lunar Architecture Study

ICON Selected by DARPA for LunA-10 Lunar Architecture Study

ICON, one of the leaders in advanced construction technologies and large-scale 3D printing announced that the Defense Advanced Research Projects Agency (DARPA) has selected the company to take part in the agency's 10-year Lunar Architecture (LunA-10) capability study. ICON is among a group of 14 performers that DARPA selected through a competitive solicitation process.

DARPA, a division of the U.S. Department of Defense founded in 1958, is one of the most storied research institutions in history. They are responsible for seeding many technologies we rely on in our daily lives, from GPS to the Internet to mRNA vaccines, and military capabilities like stealth technology. The agency is known for developing breakthrough ideas that disrupt or massively accelerate technology roadmaps. LunA-10 aims to convene a group of companies within the space industry whose products and services collectively represent the foundational elements of a burgeoning lunar economy. The seven-month study will aim to create a framework for interoperable commercial lunar architecture that will help to guide lunar research and investment over the next ten years.

"It is inspiring to see DARPA doing what it does best - moving fast on hard problems and catalyzing commercial innovation for the good of the country and humanity," said ICON co-founder and CEO Jason Ballard. "ICON is honoured to be selected as part of the LunA-10 study to accelerate economic vibrancy on the Moon."

ICON's vision for building on other worlds requires inputs from adjacent technology providers and innovators, from power to communications to mobility providers. Participating in the LunA-10 study puts ICON's space and off-world R&D team in direct contact with these providers.

"By participating in LunA-10, we can understand what inputs are going to be available, when, at what cost, and in what quantities. Similarly, those same providers will now understand what ICON capabilities they can rely on to enable their capabilities and services in the lunar economy," said Evan Jensen, ICON's Vice President of Strategic R&D.

This latest accomplishment complements ICON's work for research and development on the lunar surface. In 2022, under Phase III of NASA's Small Business Innovation Research (SBIR) program, ICON was awarded a nearly $60 million contract for ICON's Project Olympus to research and develop space-based construction systems to support planned exploration of the Moon and beyond. ICON's Olympus system is intended to be a multi-purpose construction system primarily using local Lunar and Martian resources as building materials to further the efforts of NASA as well as commercial organizations to establish a sustained lunar presence.

In 2021, ICON was also awarded a subcontract through Jacobs supporting NASA's Space Technology Mission Directorate (STMD) as part of NASA's Crew Health and Performance Exploration Analog (CHAPEA) and delivered the world's first and only simulated Mars surface 3D-printed habitat. Designed in collaboration with architecture firm BIG-Bjarke Ingels Group, Mars Dune Alpha is located at NASA's Johnson Space Center and will aid in long-duration science missions.

Known for its advanced 3D printing technology for homebuilding on Earth, ICON began its journey to transform construction with the delivery of the first, permitted 3D-printed home in the U.S. in 2018. Since then, the team has delivered communities of 3D-printed homes in the U.S. and Mexico and barracks for women and men who serve with the U.S. Army and Air Force, and the Texas Military Department. ICON's proprietary robotics, software and materials deliver resilient, energy-efficient homes faster than conventional construction methods with less waste and more design freedom.

Click here to learn more about the 10-Year Lunar Architecture (LunA-10) Capability Study.

Click here to learn more about ICON's off-world construction and Space-based Technologies.


Publisher: SatNow
Tags:-  SatelliteGround

GNSS Constellations - A list of all GNSS satellites by constellations

beidou

Satellite NameOrbit Date
BeiDou-3 G4Geostationary Orbit (GEO)17 May, 2023
BeiDou-3 G2Geostationary Orbit (GEO)09 Mar, 2020
Compass-IGSO7Inclined Geosynchronous Orbit (IGSO)09 Feb, 2020
BeiDou-3 M19Medium Earth Orbit (MEO)16 Dec, 2019
BeiDou-3 M20Medium Earth Orbit (MEO)16 Dec, 2019
BeiDou-3 M21Medium Earth Orbit (MEO)23 Nov, 2019
BeiDou-3 M22Medium Earth Orbit (MEO)23 Nov, 2019
BeiDou-3 I3Inclined Geosynchronous Orbit (IGSO)04 Nov, 2019
BeiDou-3 M23Medium Earth Orbit (MEO)22 Sep, 2019
BeiDou-3 M24Medium Earth Orbit (MEO)22 Sep, 2019

galileo

Satellite NameOrbit Date
GSAT0223MEO - Near-Circular05 Dec, 2021
GSAT0224MEO - Near-Circular05 Dec, 2021
GSAT0219MEO - Near-Circular25 Jul, 2018
GSAT0220MEO - Near-Circular25 Jul, 2018
GSAT0221MEO - Near-Circular25 Jul, 2018
GSAT0222MEO - Near-Circular25 Jul, 2018
GSAT0215MEO - Near-Circular12 Dec, 2017
GSAT0216MEO - Near-Circular12 Dec, 2017
GSAT0217MEO - Near-Circular12 Dec, 2017
GSAT0218MEO - Near-Circular12 Dec, 2017

glonass

Satellite NameOrbit Date
Kosmos 2569--07 Aug, 2023
Kosmos 2564--28 Nov, 2022
Kosmos 2559--10 Oct, 2022
Kosmos 2557--07 Jul, 2022
Kosmos 2547--25 Oct, 2020
Kosmos 2545--16 Mar, 2020
Kosmos 2544--11 Dec, 2019
Kosmos 2534--27 May, 2019
Kosmos 2529--03 Nov, 2018
Kosmos 2527--16 Jun, 2018

gps

Satellite NameOrbit Date
Navstar 82Medium Earth Orbit19 Jan, 2023
Navstar 81Medium Earth Orbit17 Jun, 2021
Navstar 78Medium Earth Orbit22 Aug, 2019
Navstar 77Medium Earth Orbit23 Dec, 2018
Navstar 76Medium Earth Orbit05 Feb, 2016
Navstar 75Medium Earth Orbit31 Oct, 2015
Navstar 74Medium Earth Orbit15 Jul, 2015
Navstar 73Medium Earth Orbit25 Mar, 2015
Navstar 72Medium Earth Orbit29 Oct, 2014
Navstar 71Medium Earth Orbit02 Aug, 2014

irnss

Satellite NameOrbit Date
NVS-01Geostationary Orbit (GEO)29 May, 2023
IRNSS-1IInclined Geosynchronous Orbit (IGSO)12 Apr, 2018
IRNSS-1HSub Geosynchronous Transfer Orbit (Sub-GTO)31 Aug, 2017
IRNSS-1GGeostationary Orbit (GEO)28 Apr, 2016
IRNSS-1FGeostationary Orbit (GEO)10 Mar, 2016
IRNSS-1EGeosynchronous Orbit (IGSO)20 Jan, 2016
IRNSS-1DInclined Geosynchronous Orbit (IGSO)28 Mar, 2015
IRNSS-1CGeostationary Orbit (GEO)16 Oct, 2014
IRNSS-1BInclined Geosynchronous Orbit (IGSO)04 Apr, 2014
IRNSS-1AInclined Geosynchronous Orbit (IGSO)01 Jul, 2013